IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.14839.html
   My bibliography  Save this paper

Multi-Task Dynamic Pricing in Credit Market with Contextual Information

Author

Listed:
  • Adel Javanmard
  • Jingwei Ji
  • Renyuan Xu

Abstract

We study the dynamic pricing problem faced by a broker that buys and sells a large number of financial securities in the credit market, such as corporate bonds, government bonds, loans, and other credit-related securities. One challenge in pricing these securities is their infrequent trading, which leads to insufficient data for individual pricing. However, many of these securities share structural features that can be utilized. Building on this, we propose a multi-task dynamic pricing framework that leverages these shared structures across securities, enhancing pricing accuracy through learning. In our framework, a security is fully characterized by a $d$ dimensional contextual/feature vector. The customer will buy (sell) the security from the broker if the broker quotes a price lower (higher) than that of the competitors. We assume a linear contextual model for the competitor's pricing, with unknown parameters a priori. The parameters for pricing different securities may or may not be similar to each other. The firm's objective is to minimize the expected regret, namely, the expected revenue loss against a clairvoyant policy which has the knowledge of the parameters of the competitor's pricing model. We show that the regret of our policy is better than both the policy that treats each security individually and the policy that treats all securities as the same. Moreover, the regret is bounded by $\tilde{O} ( \delta_{\max} \sqrt{T M d} + M d ) $, where $M$ is the number of securities and $\delta_{\max}$ characterizes the overall dissimilarity across securities in the basket.

Suggested Citation

  • Adel Javanmard & Jingwei Ji & Renyuan Xu, 2024. "Multi-Task Dynamic Pricing in Credit Market with Contextual Information," Papers 2410.14839, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2410.14839
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.14839
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant & Iuliia Manziuk, 2019. "Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(5), pages 387-452, September.
    2. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    3. Li, Ka Leung & Wong, Hoi Ying, 2008. "Structural models of corporate bond pricing with maximum likelihood estimation," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 751-777, September.
    4. Stefano Giglio & Bryan Kelly & Dacheng Xiu, 2022. "Factor Models, Machine Learning, and Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 14(1), pages 337-368, November.
    5. Daniele Bianchi & Matthias Büchner & Tobias Hoogteijling & Andrea Tamoni, 2021. "Corrigendum: Bond Risk Premiums with Machine Learning [Bond risk premiums with machine learning]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1090-1103.
    6. Giampaolo Gabbi & Andrea Sironi, 2005. "Which factors affect corporate bonds pricing? Empirical evidence from eurobonds primary market spreads," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 59-74.
    7. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    8. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    9. Jean-David Fermanian & Olivier Guéant & Jiang Pu, 2016. "The behavior of dealers and clients on the European corporate bond market: the case of Multi-Dealer-to-Client platforms," Working Papers 2016-34, Center for Research in Economics and Statistics.
    10. N. Bora Keskin & Assaf Zeevi, 2014. "Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies," Operations Research, INFORMS, vol. 62(5), pages 1142-1167, October.
    11. Xi Chen & David Simchi-Levi & Yining Wang, 2022. "Privacy-Preserving Dynamic Personalized Pricing with Demand Learning," Management Science, INFORMS, vol. 68(7), pages 4878-4898, July.
    12. Dion Bongaerts & Frank de Jong & Joost Driessen, 2017. "An Asset Pricing Approach to Liquidity Effects in Corporate Bond Markets," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1229-1269.
    13. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    14. Maxime C. Cohen & Ilan Lobel & Renato Paes Leme, 2020. "Feature-Based Dynamic Pricing," Management Science, INFORMS, vol. 66(11), pages 4921-4943, November.
    15. Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
    16. Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
    17. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    18. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    19. Hamsa Bastani & David Simchi-Levi & Ruihao Zhu, 2022. "Meta Dynamic Pricing: Transfer Learning Across Experiments," Management Science, INFORMS, vol. 68(3), pages 1865-1881, March.
    20. Hamsa Bastani, 2021. "Predicting with Proxies: Transfer Learning in High Dimension," Management Science, INFORMS, vol. 67(5), pages 2964-2984, May.
    21. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    22. Roger B. Myerson, 1981. "Optimal Auction Design," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 58-73, February.
    23. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    24. Jianqing Fan & Lingzhou Xue & Hui Zou, 2016. "Multitask Quantile Regression Under the Transnormal Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1726-1735, October.
    25. Leo Breiman & Jerome H. Friedman, 1997. "Predicting Multivariate Responses in Multiple Linear Regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 3-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    2. Gang Chu & John W. Goodell & Dehua Shen & Yongjie Zhang, 2022. "Machine learning to establish proxies for investor attention: evidence of improved stock-return prediction," Annals of Operations Research, Springer, vol. 318(1), pages 103-128, November.
    3. Fallahgoul, Hasan & Franstianto, Vincentius & Lin, Xin, 2024. "Asset pricing with neural networks: Significance tests," Journal of Econometrics, Elsevier, vol. 238(1).
    4. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
    5. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    6. Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
    7. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    8. Jorge Guijarro-Ordonez & Markus Pelger & Greg Zanotti, 2021. "Deep Learning Statistical Arbitrage," Papers 2106.04028, arXiv.org, revised Oct 2022.
    9. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Nov 2024.
    10. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    11. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    12. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    13. Xiao, Xiang & Hua, Xia & Qin, Kexin, 2024. "A self-attention based cross-sectional return forecasting model with evidence from the Chinese market," Finance Research Letters, Elsevier, vol. 62(PA).
    14. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    15. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    16. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
    17. Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    18. Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
    19. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    20. Beckmeyer, Heiner & Wiedemann, Timo, 2022. "Recovering Missing Firm Characteristics with Attention-Based Machine Learning," VfS Annual Conference 2022 (Basel): Big Data in Economics 264135, Verein für Socialpolitik / German Economic Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.14839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.