IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.09226.html
   My bibliography  Save this paper

How & Why To Use Audience Segmentation to Maximize (Listener) Demand Across Digital Music Portfolio

Author

Listed:
  • Kobi Abayomi

Abstract

Digital delivery of songs has radically changed the way people can enjoy music, the sort of music available for listening, and the manner by which rights holders are compensated for their contributions to songs. Listeners enjoy an unlimited potpourri of sounds, uniquely free of incremental acquisition or switching costs which have been replaced by subscription or rentier fees. This regime shift has revealed listening patterns governed by affinity, boredom, attention budget, etc.: instantaneous, dynamic, organic or programmatic song selection. This regime shift in demand availability -- with the commensurate translation of revenue implications -- deprecates current orthodoxy for content curation. The impulse to point-of-sale model is insufficient in a regime where demand revenue is proportional to demand affinity and each are strongly dependent time series processes. We explore strategies & implications -- which are generalizable to any media rights holding firm -- from a prediction & optimization point of view for two straightforward demand models.

Suggested Citation

  • Kobi Abayomi, 2024. "How & Why To Use Audience Segmentation to Maximize (Listener) Demand Across Digital Music Portfolio," Papers 2406.09226, arXiv.org.
  • Handle: RePEc:arx:papers:2406.09226
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.09226
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristian Candia & C. Jara-Figueroa & Carlos Rodriguez-Sickert & Albert-László Barabási & César A. Hidalgo, 2019. "The universal decay of collective memory and attention," Nature Human Behaviour, Nature, vol. 3(1), pages 82-91, January.
    2. Marc Ivaldi & Ambre Nicolle & Frank Verboven & Jiekai Zhang, 2024. "Displacement and complementarity in the recorded music industry: evidence from France," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 48(1), pages 43-94, March.
    3. Andrea Ordanini & Joseph C. Nunes & Anastasia Nanni, 2018. "The featuring phenomenon in music: how combining artists of different genres increases a song’s popularity," Marketing Letters, Springer, vol. 29(4), pages 485-499, December.
    4. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    2. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    3. Zhenpeng Li & Xijin Tang & Zhenjie Hong, 2022. "Collective attention dynamic induced by novelty decay," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-11, August.
    4. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    5. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    6. Ahelegbey, Daniel Felix & Billio, Monica & Casarin, Roberto, 2024. "Modeling Turning Points in the Global Equity Market," Econometrics and Statistics, Elsevier, vol. 30(C), pages 60-75.
    7. Cunico, Giovanni & Aivazidou, Eirini & Mollona, Edoardo, 2021. "Building a dynamic theory of citizens’ awareness of European Cohesion Policy interventions," European Journal of Operational Research, Elsevier, vol. 289(2), pages 758-773.
    8. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    9. Lu Shaochuan, 2023. "Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation," International Statistical Review, International Statistical Institute, vol. 91(1), pages 88-113, April.
    10. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    11. Timur Gareev & Irina Peker, 2023. "Quantity versus quality in publication activity: knowledge production at the regional level," Papers 2311.08830, arXiv.org.
    12. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2007. "Learning, Structural Instability, and Present Value Calculations," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 253-288.
    13. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
    14. Hinoveanu, Laurentiu C. & Leisen, Fabrizio & Villa, Cristiano, 2019. "Bayesian loss-based approach to change point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 61-78.
    15. Ma, Yin-Jie & Jiang, Zhi-Qiang & Podobnik, Boris, 2022. "Predictability of players’ actions as a mechanism to boost cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010. "Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks," International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
    17. Luintel, Kul B. & Khan, Mosahid & Leon-Gonzalez, Roberto & Li, Guangjie, 2016. "Financial development, structure and growth: New data, method and results," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 95-112.
    18. Petros Dellaportas & David G. T. Denison & Chris Holmes, 2007. "Flexible Threshold Models for Modelling Interest Rate Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 419-437.
    19. Guangjie Li, 2015. "A stochastic frontier model with structural breaks in efficiency and technology," Empirical Economics, Springer, vol. 49(1), pages 131-159, August.
    20. Huimin Xu & Zhang Zhang & Lingfei Wu & Cheng-Jun Wang, 2019. "The Cinderella Complex: Word embeddings reveal gender stereotypes in movies and books," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-18, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.09226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.