IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.15929.html
   My bibliography  Save this paper

Product Design Using Generative Adversarial Network: Incorporating Consumer Preference and External Data

Author

Listed:
  • Hui Li
  • Jian Ni
  • Fangzhu Yang

Abstract

The rise of generative artificial intelligence (AI) has facilitated automated product design but often neglects valuable consumer preference data within companies' internal datasets. Additionally, external sources such as social media and user-generated content (UGC) platforms contain substantial untapped information on product design and consumer preferences, yet remain underutilized. We propose a novel framework that transforms the product design paradigm to be data-driven, automated, and consumer-centric. Our method employs a semi-supervised deep generative architecture that systematically integrates multidimensional consumer preferences and heterogeneous external data. The framework is both generative and preference-aware, enabling companies to produce consumer-aligned designs with enhanced cost efficiency. Our framework trains a specialized predictor model to comprehend consumer preferences and utilizes predicted popularity metrics to guide a continuous conditional generative adversarial network (CcGAN). The trained CcGAN can directionally generate consumer-preferred designs, circumventing the expenditure associated with testing suboptimal candidates. Using external data, our framework offers particular advantages for start-ups or other resource-constrained companies confronting the ``cold-start" problem. We demonstrate the framework's efficacy through an empirical application with a self-operated photography chain, where our model successfully generated superior photo template designs. We also conduct web-based experiments to verify our method and confirm its effectiveness across varying design contexts.

Suggested Citation

  • Hui Li & Jian Ni & Fangzhu Yang, 2024. "Product Design Using Generative Adversarial Network: Incorporating Consumer Preference and External Data," Papers 2405.15929, arXiv.org, revised May 2025.
  • Handle: RePEc:arx:papers:2405.15929
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.15929
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryan Dew & Asim Ansari & Olivier Toubia, 2022. "Letting Logos Speak: Leveraging Multiview Representation Learning for Data-Driven Branding and Logo Design," Marketing Science, INFORMS, vol. 41(2), pages 401-425, March.
    2. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    3. Alex Burnap & John R. Hauser & Artem Timoshenko, 2023. "Product Aesthetic Design: A Machine Learning Augmentation," Marketing Science, INFORMS, vol. 42(6), pages 1029-1056, November.
    4. Aron Culotta & Jennifer Cutler, 2016. "Mining Brand Perceptions from Twitter Social Networks," Marketing Science, INFORMS, vol. 35(3), pages 343-362, May.
    5. Liu Liu & Daria Dzyabura & Natalie Mizik, 2020. "Visual Listening In: Extracting Brand Image Portrayed on Social Media," Marketing Science, INFORMS, vol. 39(4), pages 669-686, July.
    6. Mengxia Zhang & Lan Luo, 2023. "Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp," Management Science, INFORMS, vol. 69(1), pages 25-50, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Mosaffa & Omid Rafieian & Hema Yoganarasimhan, 2025. "Visual Polarization Measurement Using Counterfactual Image Generation," Papers 2503.10738, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maximilian Matthe & Daniel M. Ringel & Bernd Skiera, 2023. "Mapping Market Structure Evolution," Marketing Science, INFORMS, vol. 42(3), pages 589-613, May.
    2. Alireza Aghasi & Arun Rai & Yusen Xia, 2024. "A Deep Learning and Image Processing Pipeline for Object Characterization in Firm Operations," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 616-634, March.
    3. Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176, Cowles Foundation for Research in Economics, Yale University.
    4. Peiyao Li & Noah Castelo & Zsolt Katona & Miklos Sarvary, 2024. "Frontiers: Determining the Validity of Large Language Models for Automated Perceptual Analysis," Marketing Science, INFORMS, vol. 43(2), pages 254-266, March.
    5. Xuan Gong & Yunchan Zhu & Rizwan Ali & Ruijin Guo, 2019. "Capturing Associations and Sustainable Competitiveness of Brands from Social Tags," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    6. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    7. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
    8. Alex Burnap & John R. Hauser & Artem Timoshenko, 2023. "Product Aesthetic Design: A Machine Learning Augmentation," Marketing Science, INFORMS, vol. 42(6), pages 1029-1056, November.
    9. Daria Dzyabura & Siham El Kihal & John R. Hauser & Marat Ibragimov, 2023. "Leveraging the Power of Images in Managing Product Return Rates," Marketing Science, INFORMS, vol. 42(6), pages 1125-1142, November.
    10. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    11. Mohammad Mosaffa & Omid Rafieian & Hema Yoganarasimhan, 2025. "Visual Polarization Measurement Using Counterfactual Image Generation," Papers 2503.10738, arXiv.org.
    12. Brett R Gordon & Kinshuk Jerath & Zsolt Katona & Sridhar Narayanan & Jiwoong Shin & Kenneth C Wilbur, 2019. "Inefficiencies in Digital Advertising Markets," Papers 1912.09012, arXiv.org, revised Feb 2020.
    13. Pamuksuz, Utku & Yun, Joseph T. & Humphreys, Ashlee, 2021. "A Brand-New Look at You: Predicting Brand Personality in Social Media Networks with Machine Learning," Journal of Interactive Marketing, Elsevier, vol. 56(C), pages 55-69.
    14. Saridakis, Charalampos & Katsikeas, Constantine S. & Angelidou, Sofia & Oikonomidou, Maria & Pratikakis, Polyvios, 2023. "Mining Twitter lists to extract brand-related associative information for celebrity endorsement," European Journal of Operational Research, Elsevier, vol. 311(1), pages 316-332.
    15. Dawn Iacobucci & Maria Petrescu & Anjala Krishen & Michael Bendixen, 2019. "The state of marketing analytics in research and practice," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 152-181, September.
    16. Anja Plumeyer & Pascal Kottemann & Daniel Böger & Reinhold Decker, 2019. "Measuring brand image: a systematic review, practical guidance, and future research directions," Review of Managerial Science, Springer, vol. 13(2), pages 227-265, April.
    17. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    18. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    19. Andranik Tumasjan, 2024. "The many faces of social media in business and economics research: Taking stock of the literature and looking into the future," Journal of Economic Surveys, Wiley Blackwell, vol. 38(2), pages 389-426, April.
    20. Grewal, Dhruv & Herhausen, Dennis & Ludwig, Stephan & Villarroel Ordenes, Francisco, 2022. "The Future of Digital Communication Research: Considering Dynamics and Multimodality," Journal of Retailing, Elsevier, vol. 98(2), pages 224-240.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.15929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.