IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.08839.html
   My bibliography  Save this paper

Multiply-Robust Causal Change Attribution

Author

Listed:
  • Victor Quintas-Martinez
  • Mohammad Taha Bahadori
  • Eduardo Santiago
  • Jeff Mu
  • Dominik Janzing
  • David Heckerman

Abstract

Comparing two samples of data, we observe a change in the distribution of an outcome variable. In the presence of multiple explanatory variables, how much of the change can be explained by each possible cause? We develop a new estimation strategy that, given a causal model, combines regression and re-weighting methods to quantify the contribution of each causal mechanism. Our proposed methodology is multiply robust, meaning that it still recovers the target parameter under partial misspecification. We prove that our estimator is consistent and asymptotically normal. Moreover, it can be incorporated into existing frameworks for causal attribution, such as Shapley values, which will inherit the consistency and large-sample distribution properties. Our method demonstrates excellent performance in Monte Carlo simulations, and we show its usefulness in an empirical application.

Suggested Citation

  • Victor Quintas-Martinez & Mohammad Taha Bahadori & Eduardo Santiago & Jeff Mu & Dominik Janzing & David Heckerman, 2024. "Multiply-Robust Causal Change Attribution," Papers 2404.08839, arXiv.org.
  • Handle: RePEc:arx:papers:2404.08839
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.08839
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2022. "Automatic Debiased Machine Learning for Dynamic Treatment Effects and General Nested Functionals," Papers 2203.13887, arXiv.org, revised Jun 2023.
    2. Teppei Yamamoto, 2012. "Understanding the Past: Statistical Analysis of Causal Attribution," American Journal of Political Science, John Wiley & Sons, vol. 56(1), pages 237-256, January.
    3. R. M. Daniel & B. L. De Stavola & S. N. Cousens & S. Vansteelandt, 2015. "Causal mediation analysis with multiple mediators," Biometrics, The International Biometric Society, vol. 71(1), pages 1-14, March.
    4. Ron Berman, 2018. "Beyond the Last Touch: Attribution in Online Advertising," Marketing Science, INFORMS, vol. 37(5), pages 771-792, September.
    5. Bradley Efron, 2020. "Prediction, Estimation, and Attribution," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 636-655, April.
    6. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    7. Bradley Efron, 2020. "Prediction, Estimation, and Attribution," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 28-59, December.
    8. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    9. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    10. Zitong Lu & Zhi Geng & Wei Li & Shengyu Zhu & Jinzhu Jia, 2023. "Evaluating causes of effects by posterior effects of causes," Biometrika, Biometrika Trust, vol. 110(2), pages 449-465.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    4. Benítez-Peña, Sandra & Carrizosa, Emilio & Guerrero, Vanesa & Jiménez-Gamero, M. Dolores & Martín-Barragán, Belén & Molero-Río, Cristina & Ramírez-Cobo, Pepa & Romero Morales, Dolores & Sillero-Denami, 2021. "On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19," European Journal of Operational Research, Elsevier, vol. 295(2), pages 648-663.
    5. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    6. Sloczynski, Tymon, 2020. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," IZA Discussion Papers 13283, Institute of Labor Economics (IZA).
    7. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    8. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    9. Haoge Chang & Joel Middleton & P. M. Aronow, 2021. "Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials," Papers 2110.08425, arXiv.org, revised Oct 2021.
    10. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    11. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    12. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    13. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    14. Ana Fernandes & Martin Huber & Giannina Vaccaro, 2021. "Gender differences in wage expectations," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-24, June.
    15. Nelson P. Rayl & Nitish R. Sinha, 2022. "Integrating Prediction and Attribution to Classify News," Finance and Economics Discussion Series 2022-042, Board of Governors of the Federal Reserve System (U.S.).
    16. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    17. Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2022. "Variable importance without impossible data," Papers 2205.15750, arXiv.org, revised Apr 2023.
    18. Denis A Shah & Erick D De Wolf & Pierce A Paul & Laurence V Madden, 2021. "Accuracy in the prediction of disease epidemics when ensembling simple but highly correlated models," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-23, March.
    19. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2020. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202004, University of Kansas, Department of Economics, revised Feb 2020.
    20. Soojin Park & Peter M. Steiner & David Kaplan, 2018. "Identification and Sensitivity Analysis for Average Causal Mediation Effects with Time-Varying Treatments and Mediators: Investigating the Underlying Mechanisms of Kindergarten Retention Policy," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 298-320, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.08839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.