IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.05432.html
   My bibliography  Save this paper

Difference-in-Differences Estimators with Continuous Treatments and no Stayers

Author

Listed:
  • Cl'ement de Chaisemartin
  • Xavier D'Haultf{oe}uille
  • Gonzalo Vazquez-Bare

Abstract

Many treatments or policy interventions are continuous in nature. Examples include prices, taxes or temperatures. Empirical researchers have usually relied on two-way fixed effect regressions to estimate treatment effects in such cases. However, such estimators are not robust to heterogeneous treatment effects in general; they also rely on the linearity of treatment effects. We propose estimators for continuous treatments that do not impose those restrictions, and that can be used when there are no stayers: the treatment of all units changes from one period to the next. We start by extending the nonparametric results of de Chaisemartin et al. (2023) to cases without stayers. We also present a parametric estimator, and use it to revisit Desch\^enes and Greenstone (2012).

Suggested Citation

  • Cl'ement de Chaisemartin & Xavier D'Haultf{oe}uille & Gonzalo Vazquez-Bare, 2024. "Difference-in-Differences Estimators with Continuous Treatments and no Stayers," Papers 2402.05432, arXiv.org.
  • Handle: RePEc:arx:papers:2402.05432
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.05432
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2010. "Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1529-1564, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoyos, Mateo, 2024. "Tariffs and Growth: Heterogeneity by Economic Structure," SocArXiv v75aw, Center for Open Science.
    2. repec:osf:socarx:v75aw_v1 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clément de Chaisemartin & Xavier D'Haultfœuille & Gonzalo Vazquez-Bare, 2024. "Difference-in-Difference Estimators with Continuous Treatments and No Stayers," AEA Papers and Proceedings, American Economic Association, vol. 114, pages 610-613, May.
    2. Jia-Young Michael Fu & Joel L. Horowitz & Matthias Parey, 2015. "Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions," CeMMAP working papers 68/15, Institute for Fiscal Studies.
    3. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    4. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Yingjie Feng, 2024. "Nonlinear Binscatter Methods," Staff Reports 1110, Federal Reserve Bank of New York.
    5. Mammen, Enno & Van Keilegom, Ingrid & Yu, Kyusang, 2013. "Expansion for Moments of Regression Quantiles with Applications to Nonparametric Testing," LIDAM Discussion Papers ISBA 2013027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2013. "Estimating the Impact of Means-tested Subsidies under Treatment Externalities with Application to Anti-Malarial Bednets," CREATES Research Papers 2013-06, Department of Economics and Business Economics, Aarhus University.
    7. Fan, Yanqin & Guerre, Emmanuel & Zhu, Dongming, 2017. "Partial identification of functionals of the joint distribution of “potential outcomes”," Journal of Econometrics, Elsevier, vol. 197(1), pages 42-59.
    8. Francesco Bravo & Ba M. Chu & David T. Jacho-Chávez, 2017. "Semiparametric estimation of moment condition models with weakly dependent data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 108-136, January.
    9. Zongwu Cai & Xiyuan Liu, 2020. "A Functional-Coefficient VAR Model for Dynamic Quantiles with Constructing Financial Network," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202017, University of Kansas, Department of Economics, revised Oct 2020.
    10. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    11. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    12. Juan Carlos Escanciano, 2020. "Uniform Rates for Kernel Estimators of Weakly Dependent Data," Papers 2005.09951, arXiv.org.
    13. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    14. Cizek, Pavel & Sadikoglu, Serhan, 2022. "Nonseparable Panel Models with Index Structure and Correlated Random Effects," Other publications TiSEM 7899deb9-0eda-47e6-a3b8-2, Tilburg University, School of Economics and Management.
    15. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    16. Li, Jialiang & Zhang, Wenyang & Kong, Efang, 2018. "Factor models for asset returns based on transformed factors," Journal of Econometrics, Elsevier, vol. 207(2), pages 432-448.
    17. Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
    18. Koo, Bonsoo & Linton, Oliver, 2015. "Let’S Get Lade: Robust Estimation Of Semiparametric Multiplicative Volatility Models," Econometric Theory, Cambridge University Press, vol. 31(4), pages 671-702, August.
    19. Graciela Boente & Alejandra Martínez, 2017. "Marginal integration M-estimators for additive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 231-260, June.
    20. Henry, Marc & Méango, Romuald & Mourifié, Ismaël, 2024. "Role models and revealed gender-specific costs of STEM in an extended Roy model of major choice," Journal of Econometrics, Elsevier, vol. 238(2).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.05432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.