IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.10931.html
   My bibliography  Save this paper

Forecasting Cryptocurrency Staking Rewards

Author

Listed:
  • Sauren Gupta
  • Apoorva Hathi Katharaki
  • Yifan Xu
  • Bhaskar Krishnamachari
  • Rajarshi Gupta

Abstract

This research explores a relatively unexplored area of predicting cryptocurrency staking rewards, offering potential insights to researchers and investors. We investigate two predictive methodologies: a) a straightforward sliding-window average, and b) linear regression models predicated on historical data. The findings reveal that ETH staking rewards can be forecasted with an RMSE within 0.7% and 1.1% of the mean value for 1-day and 7-day look-aheads respectively, using a 7-day sliding-window average approach. Additionally, we discern diverse prediction accuracies across various cryptocurrencies, including SOL, XTZ, ATOM, and MATIC. Linear regression is identified as superior to the moving-window average for perdicting in the short term for XTZ and ATOM. The results underscore the generally stable and predictable nature of staking rewards for most assets, with MATIC presenting a noteworthy exception.

Suggested Citation

  • Sauren Gupta & Apoorva Hathi Katharaki & Yifan Xu & Bhaskar Krishnamachari & Rajarshi Gupta, 2024. "Forecasting Cryptocurrency Staking Rewards," Papers 2401.10931, arXiv.org.
  • Handle: RePEc:arx:papers:2401.10931
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.10931
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
    2. Jiahua Xu & Yebo Feng, 2022. "Reap the Harvest on Blockchain: A Survey of Yield Farming Protocols," Papers 2210.04194, arXiv.org, revised Dec 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    2. Jiahua Xu & Yebo Feng & Daniel Perez & Benjamin Livshits, 2023. "Auto.gov: Learning-based Governance for Decentralized Finance (DeFi)," Papers 2302.09551, arXiv.org, revised May 2025.
    3. Jiang, Yonghong & Wu, Lanxin & Tian, Gengyu & Nie, He, 2021. "Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19? – New evidence from quantile coherency analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    4. Wang, Yi-Ran & Ma, Chao-Qun & Ren, Yi-Shuai, 2022. "A model for CBDC audits based on blockchain technology: Learning from the DCEP," Research in International Business and Finance, Elsevier, vol. 63(C).
    5. Carlo Campajola & Marco D'Errico & Claudio J. Tessone, 2022. "MicroVelocity: rethinking the Velocity of Money for digital currencies," Papers 2201.13416, arXiv.org, revised May 2023.
    6. Assaf, Ata & Demir, Ender & Ersan, Oguz, 2024. "Detecting and date-stamping bubbles in fan tokens," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 98-113.
    7. Jabbar, Abdul & Geebren, Ahmed & Hussain, Zahid & Dani, Samir & Ul-Durar, Shajara, 2023. "Investigating individual privacy within CBDC: A privacy calculus perspective," Research in International Business and Finance, Elsevier, vol. 64(C).
    8. Raphael Auer & Bernhard Haslhofer & Stefan Kitzler & Pietro Saggese & Friedhelm Victor, 2024. "The technology of decentralized finance (DeFi)," Digital Finance, Springer, vol. 6(1), pages 55-95, March.
    9. Cao, Guangxi & Xie, Wenhao, 2022. "Asymmetric dynamic spillover effect between cryptocurrency and China's financial market: Evidence from TVP-VAR based connectedness approach," Finance Research Letters, Elsevier, vol. 49(C).
    10. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    11. Sergio Luis Náñez Alonso & Javier Jorge-Vázquez & Miguel Ángel Echarte Fernández & David Sanz-Bas, 2024. "Bitcoin’s bubbly behaviors: does it resemble other financial bubbles of the past?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    12. Kong, Xiaolin & Ma, Chaoqun & Ren, Yi-Shuai & Baltas, Konstantinos & Narayan, Seema, 2024. "A comparative analysis of the price explosiveness in Bitcoin and forked coins," Finance Research Letters, Elsevier, vol. 61(C).
    13. Neto, David, 2022. "Examining interconnectedness between media attention and cryptocurrency markets: A transfer entropy story," Economics Letters, Elsevier, vol. 214(C).
    14. Fieberg, Christian & Günther, Steffen & Poddig, Thorsten & Zaremba, Adam, 2024. "Non-standard errors in the cryptocurrency world," International Review of Financial Analysis, Elsevier, vol. 92(C).
    15. Peng‐Fei Dai & John W. Goodell & Luu Duc Toan Huynh & Zhifeng Liu & Shaen Corbet, 2023. "Understanding the transmission of crash risk between cryptocurrency and equity markets," The Financial Review, Eastern Finance Association, vol. 58(3), pages 539-573, August.
    16. Ravi Kashyap, 2024. "To Trade Or Not To Trade: Cascading Waterfall Round Robin Rebalancing Mechanism for Cryptocurrencies," Papers 2407.12150, arXiv.org.
    17. Dimitriadis, Konstantinos A. & Koursaros, Demetris & Savva, Christos S., 2024. "Evaluating the sophisticated digital assets and cryptocurrencies capacities of substituting international currencies in inflationary eras," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    18. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    19. Umar, Zaghum & Polat, Onur & Choi, Sun-Yong & Teplova, Tamara, 2022. "Dynamic connectedness between non-fungible tokens, decentralized finance, and conventional financial assets in a time-frequency framework," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    20. Gala, Kaushik, 2024. "Digital Davids, global Goliaths, and the Web3 sling," Business Horizons, Elsevier, vol. 67(1), pages 5-17.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.10931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.