IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.07520.html
   My bibliography  Save this paper

Estimating Counterfactual Matrix Means with Short Panel Data

Author

Listed:
  • Lihua Lei
  • Brad Ross

Abstract

We develop a new, spectral approach for identifying and estimating average counterfactual outcomes under a low-rank factor model with short panel data and general outcome missingness patterns. Applications include event studies and studies of outcomes of "matches" between agents of two types, e.g. workers and firms, typically conducted under less-flexible Two-Way-Fixed-Effects (TWFE) models of outcomes. Given an infinite population of units and a finite number of outcomes, we show our approach identifies all counterfactual outcome means, including those not estimable by existing methods, if a particular graph constructed based on overlaps in observed outcomes between subpopulations is connected. Our analogous, computationally efficient estimation procedure yields consistent, asymptotically normal estimates of counterfactual outcome means under fixed-$T$ (number of outcomes), large-$N$ (sample size) asymptotics. In a semi-synthetic simulation study based on matched employer-employee data, our estimator has lower bias and only slightly higher variance than a TWFE-model-based estimator when estimating average log-wages.

Suggested Citation

  • Lihua Lei & Brad Ross, 2023. "Estimating Counterfactual Matrix Means with Short Panel Data," Papers 2312.07520, arXiv.org, revised May 2024.
  • Handle: RePEc:arx:papers:2312.07520
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.07520
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    2. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    3. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mugnier, Martin & Wang, Ao, 2024. "Fixed Effects Nonlinear Panel Models with Heterogeneous Slopes : Identification and Consistency," The Warwick Economics Research Paper Series (TWERPS) 1531, University of Warwick, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    2. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    3. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    4. Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.
    5. Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
    6. Cerqua, Augusto & Letta, Marco, 2022. "Local inequalities of the COVID-19 crisis," Regional Science and Urban Economics, Elsevier, vol. 92(C).
    7. Jason Poulos & Andrea Albanese & Andrea Mercatanti & Fan Li, 2021. "Retrospective causal inference via matrix completion, with an evaluation of the effect of European integration on cross-border employment," Papers 2106.00788, arXiv.org.
    8. Sandro Heiniger, 2024. "Data-driven model selection within the matrix completion method for causal panel data models," Papers 2402.01069, arXiv.org.
    9. Marianne BLÉHAUT & Xavier D'HAULTFOEUILLE & Jérémy L'HOUR & Alexandre B. TSYBAKOV, 2020. "An alternative to synthetic control for models with many covariates under sparsity," Working Papers 2020-17, Center for Research in Economics and Statistics.
    10. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    11. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    12. Cerqua, Augusto & Letta, Marco, 2020. "Local economies amidst the COVID-19 crisis in Italy: a tale of diverging trajectories," MPRA Paper 104404, University Library of Munich, Germany.
    13. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    14. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    15. Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2020. "Ensuring Stability, Accuracy and Meaningfulness in Synthetic Control Methods: The Regularized SHAP-Distance Method," IREA Working Papers 202005, University of Barcelona, Research Institute of Applied Economics, revised Apr 2020.
    16. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    17. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    18. Manuel Funke & Moritz Schularick & Christoph Trebesch, 2023. "Populist Leaders and the Economy," American Economic Review, American Economic Association, vol. 113(12), pages 3249-3288, December.
    19. Maximiliano Marzetti & Rok Spruk, 2023. "Long-Term Economic Effects of Populist Legal Reforms: Evidence from Argentina," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 65(1), pages 60-95, March.
    20. De los Santos, Babur & Kim, In Kyung & Lubensky, Dmitry, 2018. "Do MSRPs decrease prices?," International Journal of Industrial Organization, Elsevier, vol. 59(C), pages 429-457.
      • Babur De los Santos & In Kyung Kim & Dmitry Lubensky, 2013. "Do MSRPs Decrease Prices?," Working Papers 2013-13, Indiana University, Kelley School of Business, Department of Business Economics and Public Policy.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.07520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.