IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.07520.html
   My bibliography  Save this paper

Estimating Counterfactual Matrix Means with Short Panel Data

Author

Listed:
  • Lihua Lei
  • Brad Ross

Abstract

We develop a more flexible approach for identifying and estimating average counterfactual outcomes when several but not all possible outcomes are observed for each unit in a large cross section. Such settings include event studies and studies of outcomes of "matches" between agents of two types, e.g. workers and firms or people and places. When outcomes are generated by a factor model that allows for low-dimensional unobserved confounders, our method yields consistent, asymptotically normal estimates of counterfactual outcome means under asymptotics that fix the number of outcomes as the cross section grows and general outcome missingness patterns, including those not accommodated by existing methods. Our method is also computationally efficient, requiring only a single eigendecomposition of a particular aggregation of any factor estimates constructed using subsets of units with the same observed outcomes. In a semi-synthetic simulation study based on matched employer-employee data, our method performs favorably compared to a Two-Way-Fixed-Effects-model-based estimator.

Suggested Citation

  • Lihua Lei & Brad Ross, 2023. "Estimating Counterfactual Matrix Means with Short Panel Data," Papers 2312.07520, arXiv.org.
  • Handle: RePEc:arx:papers:2312.07520
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.07520
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    2. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    3. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    2. Jason Poulos & Andrea Albanese & Andrea Mercatanti & Fan Li, 2021. "Retrospective causal inference via matrix completion, with an evaluation of the effect of European integration on cross-border employment," Papers 2106.00788, arXiv.org.
    3. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    4. Sandro Heiniger, 2024. "Data-driven model selection within the matrix completion method for causal panel data models," Papers 2402.01069, arXiv.org.
    5. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    6. Marianne BLÉHAUT & Xavier D'HAULTFOEUILLE & Jérémy L'HOUR & Alexandre B. TSYBAKOV, 2020. "An alternative to synthetic control for models with many covariates under sparsity," Working Papers 2020-17, Center for Research in Economics and Statistics.
    7. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    8. Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.
    9. Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
    10. Cerqua, Augusto & Letta, Marco, 2022. "Local inequalities of the COVID-19 crisis," Regional Science and Urban Economics, Elsevier, vol. 92(C).
    11. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    12. Cerqua, Augusto & Letta, Marco, 2020. "Local economies amidst the COVID-19 crisis in Italy: a tale of diverging trajectories," MPRA Paper 104404, University Library of Munich, Germany.
    13. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    14. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).
    15. Qiuyue Xia & Lu Li & Jie Dong & Bin Zhang, 2021. "Reduction Effect and Mechanism Analysis of Carbon Trading Policy on Carbon Emissions from Land Use," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    16. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    17. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Echevarría, Cruz A. & Hasancebi, Serhat & García-Enríquez, Javier, 2022. "Economic Effects of Macao’s Integration with Mainland China: A Causal Inference Study," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 37(2), pages 179-215.
    19. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    20. Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2020. "Ensuring Stability, Accuracy and Meaningfulness in Synthetic Control Methods: The Regularized SHAP-Distance Method," IREA Working Papers 202005, University of Barcelona, Research Institute of Applied Economics, revised Apr 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.07520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.