IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.04876.html
   My bibliography  Save this paper

Interacting Treatments with Endogenous Takeup

Author

Listed:
  • Mate Kormos
  • Robert P. Lieli
  • Martin Huber

Abstract

We study causal inference in randomized experiments (or quasi-experiments) following a $2\times 2$ factorial design. There are two treatments, denoted $A$ and $B$, and units are randomly assigned to one of four categories: treatment $A$ alone, treatment $B$ alone, joint treatment, or none. Allowing for endogenous non-compliance with the two binary instruments representing the intended assignment, as well as unrestricted interference across the two treatments, we derive the causal interpretation of various instrumental variable estimands under more general compliance conditions than in the literature. In general, if treatment takeup is driven by both instruments for some units, it becomes difficult to separate treatment interaction from treatment effect heterogeneity. We provide auxiliary conditions and various bounding strategies that may help zero in on causally interesting parameters. As an empirical illustration, we apply our results to a program randomly offering two different treatments, namely tutoring and financial incentives, to first year college students, in order to assess the treatments' effects on academic performance.

Suggested Citation

  • Mate Kormos & Robert P. Lieli & Martin Huber, 2023. "Interacting Treatments with Endogenous Takeup," Papers 2301.04876, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2301.04876
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.04876
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    2. Marc Ferracci & Gr�gory Jolivet & Gerard J. van den Berg, 2014. "Evidence of Treatment Spillovers Within Markets," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 812-823, December.
    3. Philip Oreopoulos & Daniel Lang & Joshua Angrist, 2009. "Incentives and Services for College Achievement: Evidence from a Randomized Trial," American Economic Journal: Applied Economics, American Economic Association, vol. 1(1), pages 136-163, January.
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    6. Kosuke Imai & Zhichao Jiang & Anup Malani, 2021. "Causal Inference With Interference and Noncompliance in Two-Stage Randomized Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 632-644, April.
    7. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    8. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    9. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    10. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    11. Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024. "Policy evaluation with multiple instrumental variables," Journal of Econometrics, Elsevier, vol. 243(1).
    12. Martin Huber & Andreas Steinmayr, 2021. "A Framework for Separating Individual-Level Treatment Effects From Spillover Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 422-436, March.
    13. Matthew Blackwell, 2017. "Instrumental Variable Methods for Conditional Effects and Causal Interaction in Voter Mobilization Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 590-599, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Debarsy & Julie Le Gallo, 2025. "Identification of spatial spillovers: Do’s and don'ts," Post-Print hal-04549691, HAL.
    2. Mogstad, Magne & Torgovitsky, Alexander, 2024. "Instrumental variables with unobserved heterogeneity in treatment effects," Handbook of Labor Economics,, Elsevier.
    3. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    4. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
    5. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    6. Aizawa, T.;, 2019. "Reviewing the Existing Evidence of the Conditional Cash Transfer in India through the Partial Identification Approach," Health, Econometrics and Data Group (HEDG) Working Papers 19/24, HEDG, c/o Department of Economics, University of York.
    7. Michael Lechner & Blaise Melly, 2010. "Partial Idendification of Wage Effects of Training Programs," Working Papers 2010-8, Brown University, Department of Economics.
    8. Christelis, Dimitris & Dobrescu, Loretti I., 2020. "The causal effect of social activities on cognition: Evidence from 20 European countries," Social Science & Medicine, Elsevier, vol. 247(C).
    9. Tadao Hoshino & Takahide Yanagi, 2024. "Causal Inference with Noncompliance and Unknown Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(548), pages 2869-2880, October.
    10. Martin Huber & Giovanni Mellace, 2015. "Sharp Bounds on Causal Effects under Sample Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 129-151, February.
    11. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    12. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    13. Ellis, Jimmy R. & Gershenson, Seth, 2016. "LATE for the Meeting: Gender, Peer Advising, and College Success," IZA Discussion Papers 9956, Institute of Labor Economics (IZA).
    14. Monique De Haan & Edwin Leuven, 2020. "Head Start and the Distribution of Long-Term Education and Labor Market Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 38(3), pages 727-765.
    15. Vikesh Amin & Jere R. Behrman & Jason M. Fletcher & Carlos A. Flores & Alfonso Flores-Lagunes & Hans-Peter Kohler, 2022. "Does Schooling Improve Cognitive Abilities at Older Ages: Causal Evidence from Nonparametric Bounds," PIER Working Paper Archive 22-016, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    16. Giorgio Brunello & Dimitris Christelis & Anna Sanz‐de‐Galdeano & Anastasia Terskaya, 2024. "Does college selectivity reduce obesity? A partial identification approach," Health Economics, John Wiley & Sons, Ltd., vol. 33(10), pages 2306-2320, October.
    17. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    18. Markus Frölich, 2004. "Programme Evaluation with Multiple Treatments," Journal of Economic Surveys, Wiley Blackwell, vol. 18(2), pages 181-224, April.
    19. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    20. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.04876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.