IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.10082.html
   My bibliography  Save this paper

Generalized Gloves of Neural Additive Models: Pursuing transparent and accurate machine learning models in finance

Author

Listed:
  • Dangxing Chen
  • Weicheng Ye

Abstract

For many years, machine learning methods have been used in a wide range of fields, including computer vision and natural language processing. While machine learning methods have significantly improved model performance over traditional methods, their black-box structure makes it difficult for researchers to interpret results. For highly regulated financial industries, transparency, explainability, and fairness are equally, if not more, important than accuracy. Without meeting regulated requirements, even highly accurate machine learning methods are unlikely to be accepted. We address this issue by introducing a novel class of transparent and interpretable machine learning algorithms known as generalized gloves of neural additive models. The generalized gloves of neural additive models separate features into three categories: linear features, individual nonlinear features, and interacted nonlinear features. Additionally, interactions in the last category are only local. The linear and nonlinear components are distinguished by a stepwise selection algorithm, and interacted groups are carefully verified by applying additive separation criteria. Empirical results demonstrate that generalized gloves of neural additive models provide optimal accuracy with the simplest architecture, allowing for a highly accurate, transparent, and explainable approach to machine learning.

Suggested Citation

  • Dangxing Chen & Weicheng Ye, 2022. "Generalized Gloves of Neural Additive Models: Pursuing transparent and accurate machine learning models in finance," Papers 2209.10082, arXiv.org.
  • Handle: RePEc:arx:papers:2209.10082
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.10082
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Ming-Yuan Leon & Miu, Peter, 2010. "A hybrid bankruptcy prediction model with dynamic loadings on accounting-ratio-based and market-based information: A binary quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 818-833, September.
    2. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Jie Yeo & Wihan van der Heever & Rui Mao & Erik Cambria & Ranjan Satapathy & Gianmarco Mengaldo, 2023. "A Comprehensive Review on Financial Explainable AI," Papers 2309.11960, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    2. Chuliá, Helena & Guillén, Montserrat & Uribe, Jorge M., 2017. "Spillovers from the United States to Latin American and G7 stock markets: A VAR quantile analysis," Emerging Markets Review, Elsevier, vol. 31(C), pages 32-46.
    3. Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
    4. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    5. Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Al-Amin Abba Dabo & Amin Hosseinian-Far, 2023. "An Integrated Methodology for Enhancing Reverse Logistics Flows and Networks in Industry 5.0," Logistics, MDPI, vol. 7(4), pages 1-26, December.
    7. Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
    8. Mensi, Walid & Shahzad, Syed Jawad Hussain & Hammoudeh, Shawkat & Zeitun, Rami & Rehman, Mobeen Ur, 2017. "Diversification potential of Asian frontier, BRIC emerging and major developed stock markets: A wavelet-based value at risk approach," Emerging Markets Review, Elsevier, vol. 32(C), pages 130-147.
    9. Mamatzakis, E & Koutsomanoli-Filippaki, Anastasia & Pasiouras, Fotios, 2012. "A quantile regression approach to bank efficiency measurement," MPRA Paper 51879, University Library of Munich, Germany.
    10. Uribe, Jorge M. & Chuliá, Helena & Guillén, Montserrat, 2017. "Uncertainty, systemic shocks and the global banking sector: Has the crisis modified their relationship?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 50(C), pages 52-68.
    11. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    12. John Martin & Sona Taheri & Mali Abdollahian, 2024. "Optimizing Ensemble Learning to Reduce Misclassification Costs in Credit Risk Scorecards," Mathematics, MDPI, vol. 12(6), pages 1, March.
    13. Ben Rejeb, Aymen & Arfaoui, Mongi, 2016. "Financial market interdependencies: A quantile regression analysis of volatility spillover," Research in International Business and Finance, Elsevier, vol. 36(C), pages 140-157.
    14. Mensi, Walid & Hammoudeh, Shawkat & Reboredo, Juan Carlos & Nguyen, Duc Khuong, 2014. "Do global factors impact BRICS stock markets? A quantile regression approach," Emerging Markets Review, Elsevier, vol. 19(C), pages 1-17.
    15. Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
    16. Dariusz Sala & Kostiantyn Pavlov & Olena Pavlova & Anton Demchuk & Liubomur Matiichuk & Dariusz Cichoń, 2023. "Determining of the Bankrupt Contingency as the Level Estimation Method of Western Ukraine Gas Distribution Enterprises’ Competence Capacity," Energies, MDPI, vol. 16(4), pages 1-13, February.
    17. Yang Liu & Fei Huang & Lili Ma & Qingguo Zeng & Jiale Shi, 2024. "Credit scoring prediction leveraging interpretable ensemble learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 286-308, March.
    18. Ding, Haoyuan & Kim, Hyung-Gun & Park, Sung Y., 2016. "Crude oil and stock markets: Causal relationships in tails?," Energy Economics, Elsevier, vol. 59(C), pages 58-69.
    19. Lee, Bong Soo & Li, Ming-Yuan Leon, 2012. "Diversification and risk-adjusted performance: A quantile regression approach," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2157-2173.
    20. Sousa, Ricardo M. & Vivian, Andrew & Wohar, Mark E., 2016. "Predicting asset returns in the BRICS: The role of macroeconomic and fundamental predictors," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 122-143.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.10082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.