IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.06713.html
   My bibliography  Save this paper

A Robust Permutation Test for Subvector Inference in Linear Regressions

Author

Listed:
  • Xavier D'Haultf{oe}uille
  • Purevdorj Tuvaandorj

Abstract

We develop a new permutation test for inference on a subvector of coefficients in linear models. The test is exact when the regressors and the error terms are independent. Then, we show that the test is asymptotically of correct level, consistent and has power against local alternatives when the independence condition is relaxed, under two main conditions. The first is a slight reinforcement of the usual absence of correlation between the regressors and the error term. The second is that the number of strata, defined by values of the regressors not involved in the subvector test, is small compared to the sample size. The latter implies that the vector of nuisance regressors is discrete. Simulations and empirical illustrations suggest that the test has good power in practice if, indeed, the number of strata is small compared to the sample size.

Suggested Citation

  • Xavier D'Haultf{oe}uille & Purevdorj Tuvaandorj, 2022. "A Robust Permutation Test for Subvector Inference in Linear Regressions," Papers 2205.06713, arXiv.org, revised Sep 2023.
  • Handle: RePEc:arx:papers:2205.06713
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.06713
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lihua Lei & Peter J Bickel, 2021. "An assumption-free exact test for fixed-design linear models with exchangeable errors [Rank tests of sub-hypotheses in the general linear regression]," Biometrika, Biometrika Trust, vol. 108(2), pages 397-412.
    2. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    3. Purevdorj Tuvaandorj, 2021. "Robust Permutation Tests in Linear Instrumental Variables Regression," Papers 2111.13774, arXiv.org, revised Jul 2024.
    4. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    5. Wooldridge, Jeffrey M., 2001. "Asymptotic Properties Of Weighted M-Estimators For Standard Stratified Samples," Econometric Theory, Cambridge University Press, vol. 17(2), pages 451-470, April.
    6. Guido W. Imbens & Paul R. Rosenbaum, 2005. "Robust, accurate confidence intervals with a weak instrument: quarter of birth and education," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 109-126, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Chaisemartin, Clément & D’Haultfœuille, Xavier, 2023. "Two-way fixed effects and differences-in-differences estimators with several treatments," Journal of Econometrics, Elsevier, vol. 236(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    2. Onur Başer & Joseph C. Gardiner & Cathy J. Bradley & Hüseyin Yüce & Charles Given, 2006. "Longitudinal analysis of censored medical cost data," Health Economics, John Wiley & Sons, Ltd., vol. 15(5), pages 513-525, May.
    3. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    4. Ammermuller, Andreas & Heijke, Hans & Wo[ss]mann, Ludger, 2005. "Schooling quality in Eastern Europe: Educational production during transition," Economics of Education Review, Elsevier, vol. 24(5), pages 579-599, October.
    5. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    6. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    7. David Gunawan & William Griffths & Anatasios Panagiotelis and Duangkamon Chotikapanich, 2017. "Bayesian Weighted Inference from Surveys "Abstract: Data from large surveys are often supplemented with sampling weights that are designed to reflect unequal probabilities of response and selecti," Department of Economics - Working Papers Series 2030, The University of Melbourne.
    8. Bruce E. Hansen & Seojeong Lee, 2021. "Inference for Iterated GMM Under Misspecification," Econometrica, Econometric Society, vol. 89(3), pages 1419-1447, May.
    9. Bruce E. Hansen & Seojeong Jay Lee, 2018. "Inference for Iterated GMM Under Misspecification and Clustering," Discussion Papers 2018-07, School of Economics, The University of New South Wales.
    10. Gary Solon & Steven J. Haider & Jeffrey M. Wooldridge, 2015. "What Are We Weighting For?," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 301-316.
    11. Ammermuller, Andreas & Heijke, Hans & Wo[ss]mann, Ludger, 2005. "Schooling quality in Eastern Europe: Educational production during transition," Economics of Education Review, Elsevier, vol. 24(5), pages 579-599, October.
    12. Tom Boot & Gianmaria Niccodemi & Tom Wansbeek, 2022. "Unbiased estimation of the OLS covariance matrix when the errors are clustered," Papers 2206.09644, arXiv.org.
    13. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    14. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2014. "Finite Population Causal Standard Errors," NBER Working Papers 20325, National Bureau of Economic Research, Inc.
    15. Donia Smaali Bouhlila, 2013. "Students’ Achievement in the MENA Countries: The Heyneman-Loxley Effect Revisited Using TIMSS 2007 Data," Working Papers 779, Economic Research Forum, revised Oct 2013.
    16. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    17. Dominik Schreyer, 2019. "Football spectator no-show behaviour in the German Bundesliga," Applied Economics, Taylor & Francis Journals, vol. 51(45), pages 4882-4901, September.
    18. S. Arunachalam & Sridhar N. Ramaswami & Pol Herrmann & Doug Walker, 2018. "Innovation pathway to profitability: the role of entrepreneurial orientation and marketing capabilities," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 744-766, July.
    19. Wo[ss]mann, Ludger & West, Martin, 2006. "Class-size effects in school systems around the world: Evidence from between-grade variation in TIMSS," European Economic Review, Elsevier, vol. 50(3), pages 695-736, April.
    20. Timothy Erickson & Toni M. Whited, 2000. "Measurement Error and the Relationship between Investment and q," Journal of Political Economy, University of Chicago Press, vol. 108(5), pages 1027-1057, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.06713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.