IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v15y2024i1p27-87.html
   My bibliography  Save this article

A robust permutation test for subvector inference in linear regressions

Author

Listed:
  • Xavier D'Haultfœuille
  • Purevdorj Tuvaandorj

Abstract

We develop a new permutation test for inference on a subvector of coefficients in linear models. The test is exact when the regressors and the error terms are independent. Then we show that the test is asymptotically of correct level, consistent, and has power against local alternatives when the independence condition is relaxed, under two main conditions. The first is a slight reinforcement of the usual absence of correlation between the regressors and the error term. The second is that the number of strata, defined by values of the regressors not involved in the subvector test, is small compared to the sample size. The latter implies that the vector of nuisance regressors is discrete. Simulations and empirical illustrations suggest that the test has good power in practice if, indeed, the number of strata is small compared to the sample size.

Suggested Citation

  • Xavier D'Haultfœuille & Purevdorj Tuvaandorj, 2024. "A robust permutation test for subvector inference in linear regressions," Quantitative Economics, Econometric Society, vol. 15(1), pages 27-87, January.
  • Handle: RePEc:wly:quante:v:15:y:2024:i:1:p:27-87
    DOI: 10.3982/QE2269
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE2269
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE2269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    2. Cyrus J. DiCiccio & Joseph P. Romano, 2017. "Robust Permutation Tests For Correlation And Regression Coefficients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1211-1220, July.
    3. Freedman, David & Lane, David, 1983. "A Nonstochastic Interpretation of Reported Significance Levels," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 292-298, October.
    4. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    5. Guido W. Imbens & Paul R. Rosenbaum, 2005. "Robust, accurate confidence intervals with a weak instrument: quarter of birth and education," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 109-126, January.
    6. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purevdorj Tuvaandorj, 2021. "Robust Permutation Tests in Linear Instrumental Variables Regression," Papers 2111.13774, arXiv.org, revised Jul 2024.
    2. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    3. David M. Ritzwoller & Joseph P. Romano & Azeem M. Shaikh, 2024. "Randomization Inference: Theory and Applications," Papers 2406.09521, arXiv.org, revised Feb 2025.
    4. Jun Wang & Yahe Yu, 2024. "Improved estimation of average treatment effects under covariate‐adaptive randomization methods," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 310-333, May.
    5. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    6. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    7. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    8. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate‐adaptive randomization with multiple treatments," Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
    9. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    10. Peter Ganong & Simon Jäger, 2018. "A Permutation Test for the Regression Kink Design," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 494-504, April.
    11. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    12. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
    13. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    14. Xavier D'Haultf{oe}uille & Purevdorj Tuvaandorj, 2022. "A Robust Permutation Test for Subvector Inference in Linear Regressions," Papers 2205.06713, arXiv.org, revised Sep 2023.
    15. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org, revised May 2025.
    16. Young, Alwyn, 2024. "Asymptotically robust permutation-based randomization confidence intervals for parametric OLS regression," LSE Research Online Documents on Economics 120933, London School of Economics and Political Science, LSE Library.
    17. Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
    18. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    19. Isaiah Andrews & Emily Oster, 2017. "A Simple Approximation for Evaluating External Validity Bias," NBER Working Papers 23826, National Bureau of Economic Research, Inc.
    20. Hyunseung Kang & Laura Peck & Luke Keele, 2018. "Inference for instrumental variables: a randomization inference approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1231-1254, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:15:y:2024:i:1:p:27-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.