IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.02328.html
   My bibliography  Save this paper

A Linear Model for Distributed Flexibility Markets and DLMPs: A Comparison with the SOCP Formulation

Author

Listed:
  • Anibal Sanjab
  • Yuting Mou
  • Ana Virag
  • Kris Kessels

Abstract

This paper examines the performance trade-offs between an introduced linear flexibility market model for congestion management and a benchmark second-order cone programming (SOCP) formulation. The linear market model incorporates voltage magnitudes and reactive powers, while providing a simpler formulation than the SOCP model, which enables its practical implementation. The paper provides a structured comparison of the two formulations relying on developed deterministic and statistical Monte Carlo case analyses using two distribution test systems (the Matpower 69-bus and 141-bus systems). The case analyses show that with the increasing spread of offered flexibility throughout the system, the linear formulation increasingly preserves the reliability of the computed system variables as compared to the SOCP formulation, while more lenient imposed voltage limits can improve the approximation of prices and power flows at the expense of a less accurate computation of voltage magnitudes.

Suggested Citation

  • Anibal Sanjab & Yuting Mou & Ana Virag & Kris Kessels, 2021. "A Linear Model for Distributed Flexibility Markets and DLMPs: A Comparison with the SOCP Formulation," Papers 2111.02328, arXiv.org.
  • Handle: RePEc:arx:papers:2111.02328
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.02328
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anthony Papavasiliou, 2018. "Analysis of distribution locational marginal prices," LIDAM Reprints CORE 3045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    3. Hélène Le Cadre & Ilyès Mezghani & Anthony Papavasiliou, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," LIDAM Reprints CORE 2996, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anibal Sanjab & H'el`ene Le Cadre & Yuting Mou, 2021. "TSO-DSOs Stable Cost Allocation for the Joint Procurement of Flexibility: A Cooperative Game Approach," Papers 2111.12830, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    2. Martin Palovic, 2022. "Coordination of power network operators as a game-theoretical problem," Bremen Energy Working Papers 0040, Bremen Energy Research.
    3. Longxi Li, 2020. "Optimal Coordination Strategies for Load Service Entity and Community Energy Systems Based on Centralized and Decentralized Approaches," Energies, MDPI, vol. 13(12), pages 1-22, June.
    4. Attar, Mehdi & Repo, Sami & Mann, Pierre, 2022. "Congestion management market design- Approach for the Nordics and Central Europe," Applied Energy, Elsevier, vol. 313(C).
    5. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    6. Le Cadre, Hélène & Bedo, Jean-Sébastien, 2020. "Consensus reaching with heterogeneous user preferences, private input and privacy-preservation output," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. Anibal Sanjab & H'el`ene Le Cadre & Yuting Mou, 2021. "TSO-DSOs Stable Cost Allocation for the Joint Procurement of Flexibility: A Cooperative Game Approach," Papers 2111.12830, arXiv.org.
    8. Schittekatte, Tim & Meeus, Leonardo, 2020. "Flexibility markets: Q&A with project pioneers," Utilities Policy, Elsevier, vol. 63(C).
    9. Talal Alazemi & Mohamed Darwish & Mohammed Radi, 2022. "TSO/DSO Coordination for RES Integration: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-26, October.
    10. Chao, Xiangrui & Kou, Gang & Peng, Yi & Viedma, Enrique Herrera, 2021. "Large-scale group decision-making with non-cooperative behaviors and heterogeneous preferences: An application in financial inclusion," European Journal of Operational Research, Elsevier, vol. 288(1), pages 271-293.
    11. Hermann, Alexander & Jensen, Tue Vissing & Østergaard, Jacob & Kazempour, Jalal, 2022. "A complementarity model for electric power transmission-distribution coordination under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(1), pages 313-329.
    12. Li, Longxi, 2021. "Coordination between smart distribution networks and multi-microgrids considering demand side management: A trilevel framework," Omega, Elsevier, vol. 102(C).
    13. Lei, Zhenxing & Liu, Mingbo & Shen, Zhijun & Lu, Wentian & Lu, Zhilin, 2023. "A data-driven Stackelberg game approach applied to analysis of strategic bidding for distributed energy resource aggregator in electricity markets," Renewable Energy, Elsevier, vol. 215(C).
    14. Josue Campos do Prado & Wei Qiao & Liyan Qu & Julio Romero Agüero, 2019. "The Next-Generation Retail Electricity Market in the Context of Distributed Energy Resources: Vision and Integrating Framework," Energies, MDPI, vol. 12(3), pages 1-24, February.
    15. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    16. Gebbran, Daniel & Mhanna, Sleiman & Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2021. "Fair coordination of distributed energy resources with Volt-Var control and PV curtailment," Applied Energy, Elsevier, vol. 286(C).
    17. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Khojasteh, Meysam & Faria, Pedro & Lezama, Fernando & Vale, Zita, 2023. "A hierarchy model to use local resources by DSO and TSO in the balancing market," Energy, Elsevier, vol. 267(C).
    19. Mariola Ndrio & Anna Winnicki & Subhonmesh Bose, 2019. "Pricing Economic Dispatch with AC Power Flow via Local Multipliers and Conic Relaxation," Papers 1910.10673, arXiv.org, revised Oct 2021.
    20. Ratha, Anubhav & Pinson, Pierre & Le Cadre, Hélène & Virag, Ana & Kazempour, Jalal, 2023. "Moving from linear to conic markets for electricity," European Journal of Operational Research, Elsevier, vol. 309(2), pages 762-783.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.02328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.