IDEAS home Printed from
   My bibliography  Save this paper

Neural Options Pricing


  • Timothy DeLise


This research investigates pricing financial options based on the traditional martingale theory of arbitrage pricing applied to neural SDEs. We treat neural SDEs as universal It\^o process approximators. In this way we can lift all assumptions on the form of the underlying price process, and compute theoretical option prices numerically. We propose a variation of the SDE-GAN approach by implementing the Wasserstein distance metric as a loss function for training. Furthermore, it is conjectured that the error of the option price implied by the learnt model can be bounded by the very Wasserstein distance metric that was used to fit the empirical data.

Suggested Citation

  • Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320,
  • Handle: RePEc:arx:papers:2105.13320

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    4. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    5. Yangang Chen & Justin W. L. Wan, 2019. "Deep Neural Network Framework Based on Backward Stochastic Differential Equations for Pricing and Hedging American Options in High Dimensions," Papers 1909.11532,
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Changqing Teng & Guanglian Li, 2024. "Neural option pricing for rough Bergomi model," Papers 2402.02714,

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Theobald, 2015. "Agent-based risk management – a regulatory approach to financial markets," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 42(5), pages 780-820, October.
    2. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    3. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    4. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    5. Battulga Gankhuu, 2021. "Equity--Linked Life Insurances on Maximum of Several Assets," Papers 2111.04038,, revised Aug 2023.
    6. Sarit Maitra & Vivek Mishra & Goutam Kr. Kundu & Kapil Arora, 2023. "Integration of Fractional Order Black-Scholes Merton with Neural Network," Papers 2310.04464,, revised Oct 2023.
    7. Raquel M. Gaspar, 2016. "On Path–dependency of Constant Proportion Portfolio Insurance strategies," EcoMod2016 9381, EcoMod.
    8. Nikita Medvedev & Zhiguang Wang, 2022. "Multistep forecast of the implied volatility surface using deep learning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 645-667, April.
    9. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    10. Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.
    11. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    12. Olkhov, Victor, 2019. "New Essentials of Economic Theory," MPRA Paper 95065, University Library of Munich, Germany.
    13. Victor Olkhov, 2022. "Market-Based Asset Price Probability," Papers 2205.07256,, revised Feb 2024.
    14. Jamdee, Sutthisit & Los, Cornelis A., 2007. "Long memory options: LM evidence and simulations," Research in International Business and Finance, Elsevier, vol. 21(2), pages 260-280, June.
    15. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    16. Mulligan, Robert F. & Lombardo, Gary A., 2004. "Maritime businesses: volatile stock prices and market valuation inefficiencies," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(2), pages 321-336, May.
    17. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    18. John Armstrong & Claudio Bellani & Damiano Brigo & Thomas Cass, 2021. "Option pricing models without probability: a rough paths approach," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1494-1521, October.
    19. Battulga Gankhuu, 2021. "Options Pricing under Bayesian MS-VAR Process," Papers 2109.05998,, revised May 2023.
    20. Leung, Melvern & Fung, Man Chung & O’Hare, Colin, 2018. "A comparative study of pricing approaches for longevity instruments," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 95-116.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.13320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.