IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1909.11532.html
   My bibliography  Save this paper

Deep Neural Network Framework Based on Backward Stochastic Differential Equations for Pricing and Hedging American Options in High Dimensions

Author

Listed:
  • Yangang Chen
  • Justin W. L. Wan

Abstract

We propose a deep neural network framework for computing prices and deltas of American options in high dimensions. The architecture of the framework is a sequence of neural networks, where each network learns the difference of the price functions between adjacent timesteps. We introduce the least squares residual of the associated backward stochastic differential equation as the loss function. Our proposed framework yields prices and deltas on the entire spacetime, not only at a given point. The computational cost of the proposed approach is quadratic in dimension, which addresses the curse of dimensionality issue that state-of-the-art approaches suffer. Our numerical simulations demonstrate these contributions, and show that the proposed neural network framework outperforms state-of-the-art approaches in high dimensions.

Suggested Citation

  • Yangang Chen & Justin W. L. Wan, 2019. "Deep Neural Network Framework Based on Backward Stochastic Differential Equations for Pricing and Hedging American Options in High Dimensions," Papers 1909.11532, arXiv.org.
  • Handle: RePEc:arx:papers:1909.11532
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1909.11532
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," CIRJE F-Series CIRJE-F-1069, CIRJE, Faculty of Economics, University of Tokyo.
    3. J. S. Kennedy & P. A. Forsyth & K. R. Vetzal, 2009. "Dynamic Hedging Under Jump Diffusion with Transaction Costs," Operations Research, INFORMS, vol. 57(3), pages 541-559, June.
    4. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    5. repec:dau:papers:123456789/4273 is not listed on IDEAS
    6. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    7. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    8. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    9. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.
    10. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    11. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," CARF F-Series CARF-F-423, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    12. Steve Heston & Guofu Zhou, 2000. "On the Rate of Convergence of Discrete‐Time Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 53-75, January.
    13. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
    2. Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320, arXiv.org.
    3. Raj G. Patel & Chia-Wei Hsing & Serkan Sahin & Samuel Palmer & Saeed S. Jahromi & Shivam Sharma & Tomas Dominguez & Kris Tziritas & Christophe Michel & Vincent Porte & Mustafa Abid & Stephane Aubert &, 2022. "Quantum-Inspired Tensor Neural Networks for Option Pricing," Papers 2212.14076, arXiv.org, revised Mar 2024.
    4. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    3. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    4. Andrew Na & Justin Wan, 2023. "Efficient Pricing and Hedging of High Dimensional American Options Using Recurrent Networks," Papers 2301.08232, arXiv.org.
    5. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    6. repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
    7. Belomestny, Denis & Milstein, Grigori N. & Spokoiny, Vladimir, 2006. "Regression methods in pricing American and Bermudan options using consumption processes," SFB 649 Discussion Papers 2006-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    10. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    11. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    12. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
    13. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    14. Dragos Florin Ciocan & Velibor V. Mišić, 2022. "Interpretable Optimal Stopping," Management Science, INFORMS, vol. 68(3), pages 1616-1638, March.
    15. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Variance Reduction Applied to Machine Learning for Pricing Bermudan/American Options in High Dimension," Papers 1903.11275, arXiv.org, revised Dec 2019.
    16. Bradley Sturt, 2021. "A nonparametric algorithm for optimal stopping based on robust optimization," Papers 2103.03300, arXiv.org, revised Mar 2023.
    17. Nicola Bruti Liberati & Eckhard Platen, 2004. "On the Efficiency of Simplified Weak Taylor Schemes for Monte Carlo Simulation in Finance," Research Paper Series 114, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    19. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    20. Mark Broadie & Menghui Cao, 2008. "Improved lower and upper bound algorithms for pricing American options by simulation," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 845-861.
    21. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.11532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.