Integration of Fractional Order Black-Scholes Merton with Neural Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Panumart Sawangtong & Kamonchat Trachoo & Wannika Sawangtong & Benchawan Wiwattanapataphee, 2018. "The Analytical Solution for the Black-Scholes Equation with Two Assets in the Liouville-Caputo Fractional Derivative Sense," Mathematics, MDPI, vol. 6(8), pages 1-14, July.
- Shuaiqiang Liu & Anastasia Borovykh & Lech A. Grzelak & Cornelis W. Oosterlee, 2019. "A neural network-based framework for financial model calibration," Papers 1904.10523, arXiv.org.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Rendleman, Richard J, Jr & Bartter, Brit J, 1979. "Two-State Option Pricing," Journal of Finance, American Finance Association, vol. 34(5), pages 1093-1110, December.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019.
"Pricing Options and Computing Implied Volatilities using Neural Networks,"
Risks, MDPI, vol. 7(1), pages 1-22, February.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing options and computing implied volatilities using neural networks," Papers 1901.08943, arXiv.org, revised Apr 2019.
- Jin, Zhuo & Liu, Guo & Yang, Hailiang, 2020. "Optimal consumption and investment strategies with liquidity risk and lifetime uncertainty for Markov regime-switching jump diffusion models," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1130-1143.
- J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
- Anna Clevenhaus & Claudia Totzeck & Matthias Ehrhardt, 2025. "A Space Mapping approach for the calibration of financial models with the application to the Heston model," Papers 2501.14521, arXiv.org.
- Gero Junike & Konstantin Pankrashkin, 2021. "Precise option pricing by the COS method--How to choose the truncation range," Papers 2109.01030, arXiv.org, revised Jan 2022.
- Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
- Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320, arXiv.org.
- Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
- Tabesh, Hamid, 1987. "Hedging price risk to soybean producers with futures and options: a case study," ISU General Staff Papers 1987010108000010306, Iowa State University, Department of Economics.
- Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
- Borges da Silva, Eduardo & Moreno Cordeiro de Sousa, Alexandre, 2022. "Avaliação econômico-financeira de fintechs no mercado brasileiro: o caso INTER [Economic and financial evaluation of fintech in the Brazilian market: the case of INTER]," MPRA Paper 115509, University Library of Munich, Germany.
- Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
- Lijie Ding & Egang Lu & Kin Cheung, 2025. "Deep Learning Option Pricing with Market Implied Volatility Surfaces," Papers 2509.05911, arXiv.org.
- Hyun-Gyoon Kim & Hyeongmi Kim & Jeonggyu Huh, 2025. "Considering Appropriate Input Features of Neural Network to Calibrate Option Pricing Models," Computational Economics, Springer;Society for Computational Economics, vol. 66(1), pages 77-104, July.
- Ghaffari, Reza & Venkatesh, Bala, 2015. "Network constrained model for options based reserve procurement by wind generators using binomial tree," Renewable Energy, Elsevier, vol. 80(C), pages 348-358.
- Nikita Medvedev & Zhiguang Wang, 2022. "Multistep forecast of the implied volatility surface using deep learning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 645-667, April.
- Ivivi J. Mwaniki, 2017. "On skewed, leptokurtic returns and pentanomial lattice option valuation via minimal entropy martingale measure," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1358894-135, January.
- Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005.
"Option pricing: Real and risk-neutral distributions,"
CoFE Discussion Papers
05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2007. "Option Pricing: Real and Risk-Neutral Distributions," MPRA Paper 11637, University Library of Munich, Germany.
- Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.
- Jasper Rou, 2025. "Error Analysis of Deep PDE Solvers for Option Pricing," Papers 2505.05121, arXiv.org.
- Duosi Zheng & Hanzhong Guo & Yanchu Liu & Wei Huang, 2025. "Neural Jumps for Option Pricing," Papers 2506.05137, arXiv.org.
- Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-11-13 (Big Data)
- NEP-CMP-2023-11-13 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.04464. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2310.04464.html