IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.00949.html
   My bibliography  Save this paper

Explainable AI in Credit Risk Management

Author

Listed:
  • Branka Hadji Misheva
  • Joerg Osterrieder
  • Ali Hirsa
  • Onkar Kulkarni
  • Stephen Fung Lin

Abstract

Artificial Intelligence (AI) has created the single biggest technology revolution the world has ever seen. For the finance sector, it provides great opportunities to enhance customer experience, democratize financial services, ensure consumer protection and significantly improve risk management. While it is easier than ever to run state-of-the-art machine learning models, designing and implementing systems that support real-world finance applications have been challenging. In large part because they lack transparency and explainability which are important factors in establishing reliable technology and the research on this topic with a specific focus on applications in credit risk management. In this paper, we implement two advanced post-hoc model agnostic explainability techniques called Local Interpretable Model Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) to machine learning (ML)-based credit scoring models applied to the open-access data set offered by the US-based P2P Lending Platform, Lending Club. Specifically, we use LIME to explain instances locally and SHAP to get both local and global explanations. We discuss the results in detail and present multiple comparison scenarios by using various kernels available for explaining graphs generated using SHAP values. We also discuss the practical challenges associated with the implementation of these state-of-art eXplainabale AI (XAI) methods and document them for future reference. We have made an effort to document every technical aspect of this research, while at the same time providing a general summary of the conclusions.

Suggested Citation

  • Branka Hadji Misheva & Joerg Osterrieder & Ali Hirsa & Onkar Kulkarni & Stephen Fung Lin, 2021. "Explainable AI in Credit Risk Management," Papers 2103.00949, arXiv.org.
  • Handle: RePEc:arx:papers:2103.00949
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.00949
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bracke, Philippe & Datta, Anupam & Jung, Carsten & Sen, Shayak, 2019. "Machine learning explainability in finance: an application to default risk analysis," Bank of England working papers 816, Bank of England.
    2. Mirko Moscatelli & Simone Narizzano & Fabio Parlapiano & Gianluca Viggiano, 2019. "Corporate default forecasting with machine learning," Temi di discussione (Economic working papers) 1256, Bank of Italy, Economic Research and International Relations Area.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petter Eilif de Lange & Borger Melsom & Christian Bakke Vennerød & Sjur Westgaard, 2022. "Explainable AI for Credit Assessment in Banks," JRFM, MDPI, vol. 15(12), pages 1-23, November.
    2. Nwafor, Chioma Ngozi & Nwafor, Obumneme Zimuzor, 2023. "Determinants of non-performing loans: An explainable ensemble and deep neural network approach," Finance Research Letters, Elsevier, vol. 56(C).
    3. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
    4. Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Forecasting, MDPI, vol. 3(2), pages 1-44, May.
    5. Wei Jie Yeo & Wihan van der Heever & Rui Mao & Erik Cambria & Ranjan Satapathy & Gianmarco Mengaldo, 2023. "A Comprehensive Review on Financial Explainable AI," Papers 2309.11960, arXiv.org.
    6. Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
    7. Zhiyu Cao & Zihan Chen & Prerna Mishra & Hamed Amini & Zachary Feinstein, 2023. "Modeling Inverse Demand Function with Explainable Dual Neural Networks," Papers 2307.14322, arXiv.org, revised Oct 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Branzoli & Ilaria Supino, 2020. "FinTech credit: a critical review of empirical research," Questioni di Economia e Finanza (Occasional Papers) 549, Bank of Italy, Economic Research and International Relations Area.
    2. Giuseppe Orlando & Roberta Pelosi, 2020. "Non-Performing Loans for Italian Companies: When Time Matters. An Empirical Research on Estimating Probability to Default and Loss Given Default," IJFS, MDPI, vol. 8(4), pages 1-22, November.
    3. Zhiyu Cao & Zihan Chen & Prerna Mishra & Hamed Amini & Zachary Feinstein, 2023. "Modeling Inverse Demand Function with Explainable Dual Neural Networks," Papers 2307.14322, arXiv.org, revised Oct 2023.
    4. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    5. Falco J. Bargagli-Dtoffi & Massimo Riccaboni & Armando Rungi, 2020. "Machine Learning for Zombie Hunting. Firms Failures and Financial Constraints," Working Papers 01/2020, IMT School for Advanced Studies Lucca, revised Jun 2020.
    6. Kumar, Rishabh & Koshiyama, Adriano & da Costa, Kleyton & Kingsman, Nigel & Tewarrie, Marvin & Kazim, Emre & Roy, Arunita & Treleaven, Philip & Lovell, Zac, 2023. "Deep learning model fragility and implications for financial stability and regulation," Bank of England working papers 1038, Bank of England.
    7. Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    8. Henri Fraisse & Matthias Laporte, 2021. "Return on Investment on AI: The Case of Capital Requirement," Working papers 809, Banque de France.
    9. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    10. Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
    11. Andrés Alonso & José Manuel Carbó, 2021. "Understanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation," Working Papers 2105, Banco de España.
    12. Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
    13. Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
    14. Giudici, Paolo & Gramegna, Alex & Raffinetti, Emanuela, 2023. "Machine Learning Classification Model Comparison," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    15. Alonso-Robisco, Andrés & Carbó, José Manuel, 2022. "Can machine learning models save capital for banks? Evidence from a Spanish credit portfolio," International Review of Financial Analysis, Elsevier, vol. 84(C).
    16. Giudici, Paolo & Raffinetti, Emanuela, 2023. "SAFE Artificial Intelligence in finance," Finance Research Letters, Elsevier, vol. 56(C).
    17. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
    18. Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
    19. Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
    20. Starosta, Wojciech, 2021. "Loss given default decomposition using mixture distributions of in-default events," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1187-1199.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.00949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.