IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.01290.html
   My bibliography  Save this paper

A Stochastic Time Series Model for Predicting Financial Trends using NLP

Author

Listed:
  • Pratyush Muthukumar
  • Jie Zhong

Abstract

Stock price forecasting is a highly complex and vitally important field of research. Recent advancements in deep neural network technology allow researchers to develop highly accurate models to predict financial trends. We propose a novel deep learning model called ST-GAN, or Stochastic Time-series Generative Adversarial Network, that analyzes both financial news texts and financial numerical data to predict stock trends. We utilize cutting-edge technology like the Generative Adversarial Network (GAN) to learn the correlations among textual and numerical data over time. We develop a new method of training a time-series GAN directly using the learned representations of Naive Bayes' sentiment analysis on financial text data alongside technical indicators from numerical data. Our experimental results show significant improvement over various existing models and prior research on deep neural networks for stock price forecasting.

Suggested Citation

  • Pratyush Muthukumar & Jie Zhong, 2021. "A Stochastic Time Series Model for Predicting Financial Trends using NLP," Papers 2102.01290, arXiv.org.
  • Handle: RePEc:arx:papers:2102.01290
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.01290
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    2. Xinyi Li & Yinchuan Li & Hongyang Yang & Liuqing Yang & Xiao-Yang Liu, 2019. "DP-LSTM: Differential Privacy-inspired LSTM for Stock Prediction Using Financial News," Papers 1912.10806, arXiv.org.
    3. Pierre Dussauge & Bernard Garrette, 1995. "Determinants of Success in International Strategic Alliances: Evidence from the Global Aerospace Industry," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 26(3), pages 505-530, September.
    4. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    5. Bernard Garrette & Pierre Dussauge, 1995. "Determinants of Success in International Strategic Alliances: Evidence from the Global Aerospace Industry," Post-Print hal-00458889, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Eckerli & Joerg Osterrieder, 2021. "Generative Adversarial Networks in finance: an overview," Papers 2106.06364, arXiv.org, revised Jul 2021.
    2. Ajay Bandi & Pydi Venkata Satya Ramesh Adapa & Yudu Eswar Vinay Pratap Kumar Kuchi, 2023. "The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges," Future Internet, MDPI, vol. 15(8), pages 1-60, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Cuñado & L. Gil-Alana & F. Gracia, 2009. "US stock market volatility persistence: evidence before and after the burst of the IT bubble," Review of Quantitative Finance and Accounting, Springer, vol. 33(3), pages 233-252, October.
    2. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    3. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    4. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    5. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    6. Krämer, Walter & Sibbertsen, Philipp & Kleiber, Christian, 2001. "Long memory vs. structural change in financial time series," Technical Reports 2001,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
    8. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    9. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    10. Guglielmo Caporale & Luis Gil-Alana, 2009. "Multiple shifts and fractional integration in the US and UK unemployment rates," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 33(4), pages 364-375, October.
    11. Bouezmarni, Taoufik & Van Bellegem, Sébastien, 2009. "Nonparametric Beta Kernel Estimator for Long Memory Time Series," IDEI Working Papers 633, Institut d'Économie Industrielle (IDEI), Toulouse.
    12. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    13. Luis A. Gil-Alana & Antonio Moreno & Seonghoon Cho, 2012. "The Deaton paradox in a long memory context with structural breaks," Applied Economics, Taylor & Francis Journals, vol. 44(25), pages 3309-3322, September.
    14. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    15. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    16. Guglielmo Maria Caporale & Hector Carcel & Luis A. Gil-Alana, 2015. "Modelling African inflation rates: nonlinear deterministic terms and long-range dependence," Applied Economics Letters, Taylor & Francis Journals, vol. 22(5), pages 421-424, March.
    17. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    18. Liudas Giraitis & Piotr Kokoszka & Remigijus Leipus & Gilles Teyssière, 2000. "Semiparametric Estimation of the Intensity of Long Memory in Conditional Heteroskedasticity," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 113-128, January.
    19. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    20. Emilio Bellini & Giuseppe Piroli & Luca Pennacchio, 2019. "Collaborative know-how and trust in university–industry collaborations: empirical evidence from ICT firms," The Journal of Technology Transfer, Springer, vol. 44(6), pages 1939-1963, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.01290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.