IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.05915.html
   My bibliography  Save this paper

Reviewing energy system modelling of decentralized energy autonomy

Author

Listed:
  • Jann Michael Weinand
  • Fabian Scheller
  • Russell McKenna

Abstract

Research attention on decentralized autonomous energy systems has increased exponentially in the past three decades, as demonstrated by the absolute number of publications and the share of these studies in the corpus of energy system modelling literature. This paper shows the status quo and future modelling needs for research on local autonomous energy systems. A total of 359 studies are roughly investigated, of which a subset of 123 in detail. The studies are assessed with respect to the characteristics of their methodology and applications, in order to derive common trends and insights. Most case studies apply to middle-income countries and only focus on the supply of electricity in the residential sector. Furthermore, many of the studies are comparable regarding objectives and applied methods. Local energy autonomy is associated with high costs, leading to levelized costs of electricity of 0.41 $/kWh on average. By analysing the studies, many improvements for future studies could be identified: the studies lack an analysis of the impact of autonomous energy systems on surrounding energy systems. In addition, the robust design of autonomous energy systems requires higher time resolutions and extreme conditions. Future research should also develop methodologies to consider local stakeholders and their preferences for energy systems.

Suggested Citation

  • Jann Michael Weinand & Fabian Scheller & Russell McKenna, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Papers 2011.05915, arXiv.org.
  • Handle: RePEc:arx:papers:2011.05915
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.05915
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byrne, John & Shen, Bo & Wallace, William, 1998. "The economics of sustainable energy for rural development: A study of renewable energy in rural China," Energy Policy, Elsevier, vol. 26(1), pages 45-54, January.
    2. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weinand, Jann & Scheller, Fabian Johannes & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Working Paper Series in Production and Energy 41, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    2. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    3. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Holtmeyer, Melissa L. & Wang, Shuxiao & Axelbaum, Richard L., 2013. "Considerations for decision-making on distributed power generation in rural areas," Energy Policy, Elsevier, vol. 63(C), pages 708-715.
    6. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    7. Rajput, Usman Jamil & Yang, Jun, 2018. "Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling," Renewable Energy, Elsevier, vol. 116(PA), pages 479-491.
    8. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    9. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    10. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    11. Ishido, Hikari, 2000. "Financing Rural Energy Services in the Philippines: Global Environment and People-Centered Development as Public Goods," Philippine Journal of Development JPD 2000 Vol. XXVII No. 2, Philippine Institute for Development Studies.
    12. Tarkeshwar Mahto & Rakesh Kumar & Hasmat Malik & Irfan Ahmad Khan & Sattam Al Otaibi & Fahad R. Albogamy, 2021. "Design and Implementation of Frequency Controller for Wind Energy-Based Hybrid Power System Using Quasi-Oppositional Harmonic Search Algorithm," Energies, MDPI, vol. 14(20), pages 1-23, October.
    13. Nfah, E.M. & Ngundam, J.M. & Vandenbergh, M. & Schmid, J., 2008. "Simulation of off-grid generation options for remote villages in Cameroon," Renewable Energy, Elsevier, vol. 33(5), pages 1064-1072.
    14. Rajput, Usman Jamil & Alhadrami, Hani & Al-Hazmi, Faten & Guo, Quiquan & Yang, Jun, 2017. "Initial investigations of a combined photo-assisted water cleaner and thermal collector," Renewable Energy, Elsevier, vol. 113(C), pages 235-247.
    15. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    16. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    17. Rebekka Volk & Mihir Rambhia & Elias Naber & Frank Schultmann, 2022. "Urban Resource Assessment, Management, and Planning Tools for Land, Ecosystems, Urban Climate, Water, and Materials—A Review," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
    18. Huo, Mo-lin & Zhang, Dan-wei, 2012. "Lessons from photovoltaic policies in China for future development," Energy Policy, Elsevier, vol. 51(C), pages 38-45.
    19. Hajat, A. & Banks, D. & Aiken, R. & Shackleton, C.M., 2009. "Efficacy of solar power units for small-scale businesses in a remote rural area, South Africa," Renewable Energy, Elsevier, vol. 34(12), pages 2722-2727.
    20. Lucas Blickwedel & Laura Stößel & Ralf Schelenz & Georg Jacobs, 2020. "Multicriterial Evaluation of Renewable Energy Expansion Projects at Municipal Level for the Available Biomass Potential," Energies, MDPI, vol. 13(23), pages 1-17, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.05915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.