IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.10568.html
   My bibliography  Save this paper

Detecting discrete processes with the Epps effect

Author

Listed:
  • Patrick Chang
  • Etienne Pienaar
  • Tim Gebbie

Abstract

The Epps effect is key phenomenology relating to high frequency correlation dynamics in financial markets. We argue that it can be used to provide insight into whether tick data is best represented as samples from Brownian diffusions, or as samples from truly discrete events represented as connected point processes. We derive the Epps effect arising from asynchrony and provide a refined method to correct for the effect. We then propose three experiments which show how to discriminate between possible underlying representations. These in turn demonstrate how a simple Hawkes representation recovers phenomenology reported in the literature that cannot be recovered using a Brownian representation without additional ad hoc model complexity. However, complex ad hoc noise models built on Brownian motions cannot in general be discriminated relative to a Hawkes representation. Nevertheless, we argue that high frequency correlation dynamics are most faithfully recovered when tick data is represented as a web of interconnected discrete events rather than being samples from continuous Brownian diffusions even when combined with noise.

Suggested Citation

  • Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Detecting discrete processes with the Epps effect," Papers 2005.10568, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2005.10568
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.10568
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toke, Ioane Muni & Pomponio, Fabrizio, 2012. "Modelling trades-through in a limit order book using hawkes processes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-23.
    2. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    3. I. Mastromatteo & M. Marsili & P. Zoi, 2011. "Financial correlations at ultra-high frequency: theoretical models and empirical estimation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 80(2), pages 243-253, March.
    4. Dassios, Angelos & Zhao, Hongbiao, 2013. "Exact simulation of Hawkes process with exponentially decaying intensity," LSE Research Online Documents on Economics 51370, London School of Economics and Political Science, LSE Library.
    5. Ovidiu V. Precup & Giulia Iori, 2007. "Cross-correlation Measures in the High-frequency Domain," The European Journal of Finance, Taylor & Francis Journals, vol. 13(4), pages 319-331.
    6. Iacopo Mastromatteo & Matteo Marsili & Patrick Zoi, 2010. "Financial correlations at ultra-high frequency: theoretical models and empirical estimation," Papers 1011.1011, arXiv.org, revised Feb 2011.
    7. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Malliavin-Mancino estimators implemented with non-uniform fast Fourier transforms," Papers 2003.02842, arXiv.org, revised Nov 2020.
    8. D. Hendricks & T. Gebbie & D. Wilcox, 2016. "Detecting intraday financial market states using temporal clustering," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1657-1678, November.
    9. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    10. Ioane Muni Toke & Fabrizio Pomponio, 2012. "Modelling Trades-Through in a Limit Order Book Using Hawkes Processes," Post-Print hal-00745554, HAL.
    11. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
    12. Aït-Sahalia, Yacine & Fan, Jianqing & Xiu, Dacheng, 2010. "High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1504-1517.
    13. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominic Bauer & Derick Diana & Tim Gebbie, 2024. "Correlation emergence in two coupled simulated limit order books," Papers 2408.03181, arXiv.org.
    2. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "The Epps effect under alternative sampling schemes," Papers 2011.11281, arXiv.org, revised Aug 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    2. Chang, Patrick & Pienaar, Etienne & Gebbie, Tim, 2021. "The Epps effect under alternative sampling schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    3. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "The Epps effect under alternative sampling schemes," Papers 2011.11281, arXiv.org, revised Aug 2021.
    4. Patrick Chang, 2020. "Fourier instantaneous estimators and the Epps effect," Papers 2007.03453, arXiv.org, revised Sep 2020.
    5. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Malliavin-Mancino estimators implemented with non-uniform fast Fourier transforms," Papers 2003.02842, arXiv.org, revised Nov 2020.
    6. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    7. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.
    8. George Barnes & Sanjaye Ramgoolam & Michael Stephanou, 2023. "Permutation invariant Gaussian matrix models for financial correlation matrices," Papers 2306.04569, arXiv.org.
    9. Haghighi, Afshin & Fallahpour, Saeid & Eyvazlu, Reza, 2016. "Modelling order arrivals at price limits using Hawkes processes," Finance Research Letters, Elsevier, vol. 19(C), pages 267-272.
    10. Xuefeng Gao & Xiang Zhou & Lingjiong Zhu, 2017. "Transform Analysis for Hawkes Processes with Applications in Dark Pool Trading," Papers 1710.01452, arXiv.org.
    11. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    12. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    13. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    14. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    15. Anufriev, Mikhail & Bottazzi, Giulio & Marsili, Matteo & Pin, Paolo, 2012. "Excess covariance and dynamic instability in a multi-asset model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1142-1161.
    16. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    17. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    18. Shunya Chomei, 2023. "Empirical analysis in limit order book modeling for Nikkei 225 Stocks with Cox-type intensities," Papers 2302.01668, arXiv.org, revised Feb 2023.
    19. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
    20. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.10568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.