IDEAS home Printed from
   My bibliography  Save this paper

Pricing Economic Dispatch with AC Power Flow via Local Multipliers and Conic Relaxation


  • Mariola Ndrio
  • Anna Winnicki
  • Subhonmesh Bose


We analyze pricing mechanisms in electricity markets with AC power flow equations that define a nonconvex feasible set for the economic dispatch problem. Specifically, we consider two possible pricing schemes. The first among these prices are derived from Lagrange multipliers that satisfy Karush-Kuhn-Tucker conditions for local optimality of the nonconvex market clearing problem. The second is derived from optimal dual multipliers of the convex semidefinite programming (SDP) based relaxation of the market clearing problem. Relationships between these prices, their revenue adequacy and market equilibrium properties are derived and compared. The SDP prices are shown to equal distribution locational marginal prices derived with second-order conic relaxations of power flow equations over radial distribution networks. We illustrate our theoretical findings through numerical experiments.

Suggested Citation

  • Mariola Ndrio & Anna Winnicki & Subhonmesh Bose, 2019. "Pricing Economic Dispatch with AC Power Flow via Local Multipliers and Conic Relaxation," Papers 1910.10673,, revised Oct 2021.
  • Handle: RePEc:arx:papers:1910.10673

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Herbert Scarf, 1994. "The Allocation of Resources in the Presence of Indivisibilities," Journal of Economic Perspectives, American Economic Association, vol. 8(4), pages 111-128, Fall.
    2. Anthony Papavasiliou, 2018. "Analysis of distribution locational marginal prices," LIDAM Reprints CORE 3045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    4. Roger E. Bohn & Michael C. Caramanis & Fred C. Schweppe, 1984. "Optimal Pricing in Electrical Networks over Space and Time," RAND Journal of Economics, The RAND Corporation, vol. 15(3), pages 360-376, Autumn.
    5. Wu, Felix & Varaiya, Pravin & Spiller, Pablo & Oren, Shmuel, 1996. "Folk Theorems on Transmission Access: Proofs and Counterexamples," Journal of Regulatory Economics, Springer, vol. 10(1), pages 5-23, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makoto TANAKA, 2005. "Optimal Transmission Capacity under Nodal Pricing and Incentive Regulation for Transco," Discussion papers 05021, Research Institute of Economy, Trade and Industry (RIETI).
    2. Blázquez de Paz, Mario, 2019. "Redispatch in Zonal Pricing Electricity Markets," Working Paper Series 1278, Research Institute of Industrial Economics.
    3. Bobo, Lucien & Mitridati, Lesia & Taylor, Josh A. & Pinson, Pierre & Kazempour, Jalal, 2021. "Price-region bids in electricity markets," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1056-1073.
    4. Karsten Neuhoff, 2002. "Optimal congestion treatment for bilateral electricity trading," Working Papers EP05, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Zugang Liu & Anna Nagurney, 2009. "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 600-624, October.
    6. Richard O’Neill & Emily Fisher & Benjamin Hobbs & Ross Baldick, 2008. "Towards a complete real-time electricity market design," Journal of Regulatory Economics, Springer, vol. 34(3), pages 220-250, December.
    7. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    8. Jullien, Céline & Pignon, Virginie & Robin, Stéphane & Staropoli, Carine, 2012. "Coordinating cross-border congestion management through auctions: An experimental approach to European solutions," Energy Economics, Elsevier, vol. 34(1), pages 1-13.
    9. Pär Holmberg & Andy Philpott, 2014. "Supply function equilibria in transportation networks," Cambridge Working Papers in Economics 1421, Faculty of Economics, University of Cambridge.
    10. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    11. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    12. Brunekreeft, Gert, 2004. "Market-based investment in electricity transmission networks: controllable flow," Utilities Policy, Elsevier, vol. 12(4), pages 269-281, December.
    13. SMEERS, Yves, 2005. "Long term locational prices and investment incentives in the transmission of electricity," LIDAM Discussion Papers CORE 2005030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Jacqueline Boucher & Yves Smeers, 2001. "Alternative Models of Restructured Electricity Systems, Part 1: No Market Power," Operations Research, INFORMS, vol. 49(6), pages 821-838, December.
    15. Horowitz, I. & Woo, C.K., 2006. "Designing Pareto-superior demand-response rate options," Energy, Elsevier, vol. 31(6), pages 1040-1051.
    16. Brunekreeft, G., 2003. "Market-based Investment in Electricity Transmission Networks: Controllable Flow," Cambridge Working Papers in Economics 0340, Faculty of Economics, University of Cambridge.
    17. Katrin Schmitz & Christoph Weber, 2013. "Does One Design Fit All? On The Transferability Of The PJM Market Design To The German Electricity Market," EWL Working Papers 1302, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Apr 2013.
    18. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    19. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    20. Ishizaki, Takayuki & Koike, Masakazu & Yamaguchi, Nobuyuki & Ueda, Yuzuru & Imura, Jun-ichi, 2020. "Day-ahead energy market as adjustable robust optimization: Spatio-temporal pricing of dispatchable generators, storage batteries, and uncertain renewable resources," Energy Economics, Elsevier, vol. 91(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.10673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.