IDEAS home Printed from
   My bibliography  Save this paper

Scalable Fair Division for 'At Most One' Preferences


  • Christian Kroer
  • Alexander Peysakhovich


Allocating multiple scarce items across a set of individuals is an important practical problem. In the case of divisible goods and additive preferences a convex program can be used to find the solution that maximizes Nash welfare (MNW). The MNW solution is equivalent to finding the equilibrium of a market economy (aka. the competitive equilibrium from equal incomes, CEEI) and thus has good properties such as Pareto optimality, envy-freeness, and incentive compatibility in the large. Unfortunately, this equivalence (and nice properties) breaks down for general preference classes. Motivated by real world problems such as course allocation and recommender systems we study the case of additive `at most one' (AMO) preferences - individuals want at most 1 of each item and lotteries are allowed. We show that in this case the MNW solution is still a convex program and importantly is a CEEI solution when the instance gets large but has a `low rank' structure. Thus a polynomial time algorithm can be used to scale CEEI (which is in general PPAD-hard) for AMO preferences. We examine whether the properties guaranteed in the limit hold approximately in finite samples using several real datasets.

Suggested Citation

  • Christian Kroer & Alexander Peysakhovich, 2019. "Scalable Fair Division for 'At Most One' Preferences," Papers 1909.10925,
  • Handle: RePEc:arx:papers:1909.10925

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Eric Budish & Estelle Cantillon, 2012. "The Multi-unit Assignment Problem: Theory and Evidence from Course Allocation at Harvard," American Economic Review, American Economic Association, vol. 102(5), pages 2237-2271, August.
    2. Milgrom,Paul, 2004. "Putting Auction Theory to Work," Cambridge Books, Cambridge University Press, number 9780521536721, December.
    3. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    4. Ken Binmore & Ariel Rubinstein & Asher Wolinsky, 1986. "The Nash Bargaining Solution in Economic Modelling," RAND Journal of Economics, The RAND Corporation, vol. 17(2), pages 176-188, Summer.
    5. Eric Budish, 2011. "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes," Journal of Political Economy, University of Chicago Press, vol. 119(6), pages 1061-1103.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.10925. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.