IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1903.04841.html
   My bibliography  Save this paper

Financial Applications of Gaussian Processes and Bayesian Optimization

Author

Listed:
  • Joan Gonzalvez
  • Edmond Lezmi
  • Thierry Roncalli
  • Jiali Xu

Abstract

In the last five years, the financial industry has been impacted by the emergence of digitalization and machine learning. In this article, we explore two methods that have undergone rapid development in recent years: Gaussian processes and Bayesian optimization. Gaussian processes can be seen as a generalization of Gaussian random vectors and are associated with the development of kernel methods. Bayesian optimization is an approach for performing derivative-free global optimization in a small dimension, and uses Gaussian processes to locate the global maximum of a black-box function. The first part of the article reviews these two tools and shows how they are connected. In particular, we focus on the Gaussian process regression, which is the core of Bayesian machine learning, and the issue of hyperparameter selection. The second part is dedicated to two financial applications. We first consider the modeling of the term structure of interest rates. More precisely, we test the fitting method and compare the GP prediction and the random walk model. The second application is the construction of trend-following strategies, in particular the online estimation of trend and covariance windows.

Suggested Citation

  • Joan Gonzalvez & Edmond Lezmi & Thierry Roncalli & Jiali Xu, 2019. "Financial Applications of Gaussian Processes and Bayesian Optimization," Papers 1903.04841, arXiv.org.
  • Handle: RePEc:arx:papers:1903.04841
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1903.04841
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    2. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    3. Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
    4. Rebonato,Riccardo, 2018. "Bond Pricing and Yield Curve Modeling," Cambridge Books, Cambridge University Press, number 9781107165854.
    5. Jean-Charles Richard & Thierry Roncalli, 2019. "Constrained Risk Budgeting Portfolios: Theory, Algorithms, Applications & Puzzles," Papers 1902.05710, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Perrin & Thierry Roncalli, 2019. "Machine Learning Optimization Algorithms & Portfolio Allocation," Papers 1909.10233, arXiv.org.
    2. Taco de Wolff & Alejandro Cuevas & Felipe Tobar, 2020. "Gaussian process imputation of multiple financial series," Papers 2002.05789, arXiv.org.
    3. Trent Spears & Stefan Zohren & Stephen Roberts, 2020. "Investment sizing with deep learning prediction uncertainties for high-frequency Eurodollar futures trading," Papers 2007.15982, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petter Eilif de Lange & Morten Risstad & Kristian Semmen & Sjur Westgaard, 2023. "Term Premia in Norwegian Interest Rate Swaps," JRFM, MDPI, vol. 16(3), pages 1-19, March.
    2. Sarah Perrin & Thierry Roncalli, 2019. "Machine Learning Optimization Algorithms & Portfolio Allocation," Papers 1909.10233, arXiv.org.
    3. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 51-62.
    4. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    5. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    6. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    7. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    8. Lily Y. Liu, 2017. "Estimating Loss Given Default from CDS under Weak Identification," Supervisory Research and Analysis Working Papers RPA 17-1, Federal Reserve Bank of Boston.
    9. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    10. Dauwe, Alexander & Moura, Marcelo L., 2011. "Forecasting the term structure of the Euro Market using Principal Component Analysis," Insper Working Papers wpe_233, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    11. Van Landschoot, Astrid, 2004. "Determinants of euro term structure of credit spreads," Working Paper Series 397, European Central Bank.
    12. Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko & Poza, Carlos, 2022. "The COVID-19 pandemic and the degree of persistence of US stock prices and bond yields," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 118-123.
    13. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    15. Bowsher, Clive G. & Meeks, Roland, 2008. "The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
    16. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    17. Mark Semelhago & Barry L. Nelson & Eunhye Song & Andreas Wächter, 2021. "Rapid Discrete Optimization via Simulation with Gaussian Markov Random Fields," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 915-930, July.
    18. Philippe Bacchetta & Kenza Benhima & Jean-Paul Renne, 2022. "Understanding Swiss real interest rates in a financially globalized world," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 158(1), pages 1-17, December.
    19. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    20. Frieder Meyer-Bullerdiek, 2017. "Rebalancing and Diversification Return – Evidence from the German Stock Market," Journal of Finance and Investment Analysis, SCIENPRESS Ltd, vol. 6(2), pages 1-1.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1903.04841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.