IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.09825.html
   My bibliography  Save this paper

Asset allocation: new evidence through network approaches

Author

Listed:
  • Gian Paolo Clemente
  • Rosanna Grassi
  • Asmerilda Hitaj

Abstract

The main contribution of the paper is to employ the financial market network as a useful tool to improve the portfolio selection process, where nodes indicate securities and edges capture the dependence structure of the system. Three different methods are proposed in order to extract the dependence structure between assets in a network context. Starting from this modified structure, we formulate and then we solve the asset allocation problem. We find that the portfolios obtained through a network-based approach are composed mainly of peripheral assets, which are poorly connected with the others. These portfolios, in the majority of cases, are characterized by an higher trade-off between performance and risk with respect to the traditional Global Minimum Variance (GMV) portfolio. Additionally, this methodology benefits of a graphical visualization of the selected portfolio directly over the graphic layout of the network, which helps in improving our understanding of the optimal strategy.

Suggested Citation

  • Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2018. "Asset allocation: new evidence through network approaches," Papers 1810.09825, arXiv.org.
  • Handle: RePEc:arx:papers:1810.09825
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.09825
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    2. Mcassey, Michael P. & Bijma, Fetsje, 2015. "A clustering coefficient for complete weighted networks," Network Science, Cambridge University Press, vol. 3(2), pages 183-195, June.
    3. Michael W. Brandt & Pedro Santa‐Clara, 2006. "Dynamic Portfolio Selection by Augmenting the Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    4. Rafael Schmidt & Ulrich Stadtmüller, 2006. "Non‐parametric Estimation of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 307-335, June.
    5. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    6. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    7. Campbell, Rachel & Huisman, Ronald & Koedijk, Kees, 2001. "Optimal portfolio selection in a Value-at-Risk framework," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1789-1804, September.
    8. Hitaj, Asmerilda & Zambruno, Giovanni, 2016. "Are Smart Beta strategies suitable for hedge fund portfolios?," Review of Financial Economics, Elsevier, vol. 29(C), pages 37-51.
    9. Andre R. Neveu, 2018. "A survey of network-based analysis and systemic risk measurement," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 241-281, July.
    10. repec:dau:papers:123456789/4688 is not listed on IDEAS
    11. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    12. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "A new method for mean-variance portfolio optimization with cardinality constraints," Annals of Operations Research, Springer, vol. 205(1), pages 213-234, May.
    13. Tabak, Benjamin M. & Takami, Marcelo & Rocha, Jadson M.C. & Cajueiro, Daniel O. & Souza, Sergio R.S., 2014. "Directed clustering coefficient as a measure of systemic risk in complex banking networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 211-216.
    14. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    15. P. Giudici & A. Spelta, 2016. "Graphical Network Models for International Financial Flows," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 128-138, January.
    16. Bloomfield, Ted & Leftwich, Richard & Long, John Jr., 1977. "Portfolio strategies and performance," Journal of Financial Economics, Elsevier, vol. 5(2), pages 201-218, November.
    17. Hendrik Scholz, 2007. "Refinements to the Sharpe ratio: Comparing alternatives for bear markets," Journal of Asset Management, Palgrave Macmillan, vol. 7(5), pages 347-357, January.
    18. Hinich, Melvin J & Patterson, Douglas M, 1985. "Evidence of Nonlinearity in Daily Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(1), pages 69-77, January.
    19. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," The Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    20. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    21. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2021. "Asset allocation: new evidence through network approaches," Annals of Operations Research, Springer, vol. 299(1), pages 61-80, April.
    2. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2019. "Smart network based portfolios," Papers 1907.01274, arXiv.org.
    3. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2022. "Smart network based portfolios," Annals of Operations Research, Springer, vol. 316(2), pages 1519-1541, September.
    4. Paolo Giudici & Gloria Polinesi & Alessandro Spelta, 2022. "Network models to improve robot advisory portfolios," Annals of Operations Research, Springer, vol. 313(2), pages 965-989, June.
    5. Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
    6. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    7. Gian Paolo Clemente & Rosanna Grassi & Chiara Pederzoli, 2020. "Networks and market-based measures of systemic risk: the European banking system in the aftermath of the financial crisis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 159-181, January.
    8. Giorgio Consigli & Asmerilda Hitaj & Elisa Mastrogiacomo, 2019. "Portfolio choice under cumulative prospect theory: sensitivity analysis and an empirical study," Computational Management Science, Springer, vol. 16(1), pages 129-154, February.
    9. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    10. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    11. Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022. "Network based evidence of the financial impact of Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
    12. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    13. Mikhail Stolbov & Daniil Parfenov, 2023. "Credit risk linkages in the international banking network, 2000–2019," Risk Management, Palgrave Macmillan, vol. 25(3), pages 1-38, September.
    14. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    15. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    16. Ricca, Federica & Scozzari, Andrea, 2024. "Portfolio optimization through a network approach: Network assortative mixing and portfolio diversification," European Journal of Operational Research, Elsevier, vol. 312(2), pages 700-717.
    17. Bradrania, Reza & Pirayesh Neghab, Davood, 2021. "State-dependent asset allocation using neural networks," MPRA Paper 115254, University Library of Munich, Germany.
    18. Paolo Bartesaghi & Michele Benzi & Gian Paolo Clemente & Rosanna Grassi & Ernesto Estrada, 2019. "Risk-dependent centrality in economic and financial networks," Papers 1907.07908, arXiv.org, revised Apr 2020.
    19. Fei Ren & Ya-Nan Lu & Sai-Ping Li & Xiong-Fei Jiang & Li-Xin Zhong & Tian Qiu, 2017. "Dynamic Portfolio Strategy Using Clustering Approach," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    20. Adão, Luiz F.S. & Silveira, Douglas & Ely, Regis A. & Cajueiro, Daniel O., 2022. "The impacts of interest rates on banks’ loan portfolio risk-taking," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.09825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.