Long Short-Term Memory Networks for CSI300 Volatility Prediction with Baidu Search Volume
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
- Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
- Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lucien Boulet, 2021. "Forecasting High-Dimensional Covariance Matrices of Asset Returns with Hybrid GARCH-LSTMs," Papers 2109.01044, arXiv.org.
- Shujian Liao & Jian Chen & Hao Ni, 2021. "Forex Trading Volatility Prediction using Neural Network Models," Papers 2112.01166, arXiv.org, revised Dec 2021.
- Wang, Ping & Han, Wei & Huang, Chengcheng & Duong, Duy, 2022. "Forecasting realised volatility from search volume and overnight sentiment: Evidence from China," Research in International Business and Finance, Elsevier, vol. 62(C).
- Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
- Daehyeon PARK & Doojin RYU, 2021. "Forecasting Stock Market Dynamics using Bidirectional Long Short-Term Memory," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 22-34, June.
- Ren-jie Han & Shi-yuan Liu & Qian Li, 2019. "Do Chinese Internet Users Exist Heterogeneity in Search Behavior?," Papers 1911.00715, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019.
"Noise traders and smart money: Evidence from online searches,"
Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
- Fabrice Hervé & Mohamed Zouaoui & Bertrand Belvaux, 2019. "Noise traders and smart money: Evidence from online searches," Post-Print hal-02065042, HAL.
- Steve, Heinke & Niels, Warmuth, 2016. "A Rational Inattention Perspective on Equilibrium Asset Pricing under Heterogeneous Information with Structural Breaks and Market Efficiency," MPRA Paper 68715, University Library of Munich, Germany.
- Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
- Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
- Umar, Tarik, 2022. "Complexity aversion when SeekingAlpha," Journal of Accounting and Economics, Elsevier, vol. 73(2).
- Mohrschladt, Hannes, 2021. "The ordering of historical returns and the cross-section of subsequent returns," Journal of Banking & Finance, Elsevier, vol. 125(C).
- Giuseppe Pernagallo & Benedetto Torrisi, 2020.
"A theory of information overload applied to perfectly efficient financial markets,"
Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(2), pages 223-236, October.
- Giuseppe Pernagallo & Benedetto Torrisi, 2019. "A Theory of Information overload applied to perfectly efficient financial markets," Papers 1904.03726, arXiv.org.
- Emanuele Citera, 2021. "Stock Returns, Market Trends, and Information Theory: A Statistical Equilibrium Approach," Working Papers 2116, New School for Social Research, Department of Economics.
- Thomas J. Brennan & Andrew W. Lo & Ruixun Zhang, 2018. "Variety Is the Spice of Life: Irrational Behavior as Adaptation to Stochastic Environments," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 8(03), pages 1-39, September.
- Wang, Wenzhao & Duxbury, Darren, 2021. "Institutional investor sentiment and the mean-variance relationship: Global evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 415-441.
- Erdong Chen & Mengzhong Ma & Zixin Nie, 2024. "Exploring the Impact: How Decentralized Exchange Designs Shape Traders' Behavior on Perpetual Future Contracts," Papers 2402.03953, arXiv.org, revised Apr 2024.
- Jasman Tuyon & Zamri Ahmada, 2016. "Behavioural finance perspectives on Malaysian stock market efficiency," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(1), pages 43-61, March.
- Piñeiro-Chousa, Juan & López-Cabarcos, M.Ángeles & Ribeiro-Soriano, Domingo, 2020. "Does investor attention influence water companies’ stock returns?," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
- Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Hailiang Huang & Yanhong Li & Yingying Zhang, 2018. "Investors’ attention and overpricing of IPO: an empirical study on China’s growth enterprise market," Information Systems and e-Business Management, Springer, vol. 16(4), pages 761-774, November.
- Daniel, Kent & Hirshleifer, David & Teoh, Siew Hong, 2002. "Investor psychology in capital markets: evidence and policy implications," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 139-209, January.
- Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
- Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-07-23 (Big Data)
- NEP-CMP-2018-07-23 (Computational Economics)
- NEP-FOR-2018-07-23 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.11954. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.