IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1705.06208.html
   My bibliography  Save this paper

Hierarchical organization of H. Eugene Stanley scientific collaboration community in weighted network representation

Author

Listed:
  • Stanislaw Drozdz
  • Andrzej Kulig
  • Jaroslaw Kwapien
  • Artur Niewiarowski
  • Marek Stanuszek

Abstract

By mapping the most advanced elements of the contemporary social interactions, the world scientific collaboration network develops an extremely involved and heterogeneous organization. Selected characteristics of this heterogeneity are studied here and identified by focusing on the scientific collaboration community of H. Eugene Stanley - one of the most prolific world scholars at the present time. Based on the Web of Science records as of March 28, 2016, several variants of networks are constructed. It is found that the Stanley #1 network - this in analogy to the Erd\H{o}s # - develops a largely consistent hierarchical organization and Stanley himself obeys rules of the same hierarchy. However, this is seen exclusively in the weighted network representation. When such a weighted network is evolving, an existing relevant model indicates that the spread of weight gets stimulation to the multiplicative bursts over the neighbouring nodes, which leads to a balanced growth of interconnections among them. While not exclusive to Stanley, such a behaviour is not a rule, however. Networks of other outstanding scholars studied here more often develop a star-like form and the central hubs constitute the outliers. This study is complemented by a spectral analysis of the normalised Laplacian matrices derived from the weighted variants of the corresponding networks and, among others, it points to the efficiency of such a procedure for identifying the component communities and relations among them in the complex weighted networks.

Suggested Citation

  • Stanislaw Drozdz & Andrzej Kulig & Jaroslaw Kwapien & Artur Niewiarowski & Marek Stanuszek, 2017. "Hierarchical organization of H. Eugene Stanley scientific collaboration community in weighted network representation," Papers 1705.06208, arXiv.org, revised Oct 2017.
  • Handle: RePEc:arx:papers:1705.06208
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1705.06208
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emily M. Jin & Michelle Girvan & M. E. J. Newman, 2001. "The Structure of Growing Social Networks," Working Papers 01-06-032, Santa Fe Institute.
    2. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    3. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    4. Barthélemy, Marc & Barrat, Alain & Pastor-Satorras, Romualdo & Vespignani, Alessandro, 2005. "Characterization and modeling of weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 34-43.
    5. Wagner, Caroline S. & Leydesdorff, Loet, 2005. "Network structure, self-organization, and the growth of international collaboration in science," Research Policy, Elsevier, vol. 34(10), pages 1608-1618, December.
    6. Li, Menghui & Wu, Jinshan & Wang, Dahui & Zhou, Tao & Di, Zengru & Fan, Ying, 2007. "Evolving model of weighted networks inspired by scientific collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 355-364.
    7. Richard B. Freeman & Ina Ganguli & Raviv Murciano-Goroff, 2014. "Why and Wherefore of Increased Scientific Collaboration," NBER Chapters, in: The Changing Frontier: Rethinking Science and Innovation Policy, pages 17-48, National Bureau of Economic Research, Inc.
    8. Jonathan Adams, 2012. "The rise of research networks," Nature, Nature, vol. 490(7420), pages 335-336, October.
    9. Ding, Ying, 2011. "Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks," Journal of Informetrics, Elsevier, vol. 5(1), pages 187-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Li & Huajiao Li & Nairong Liu & Xueyong Liu, 2018. "Important institutions of interinstitutional scientific collaboration networks in materials science," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 85-103, October.
    2. Lu, Wei & Ren, Yan & Huang, Yong & Bu, Yi & Zhang, Yuehan, 2021. "Scientific collaboration and career stages: An ego-centric perspective," Journal of Informetrics, Elsevier, vol. 15(4).
    3. Wang, Difei & Jian, Lirong & Cao, Fengyuan & Xue, Chenyan, 2022. "An extended scale-free network evolution model based on star-like coupling motif embedding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Türker, İlker & Çavuşoğlu, Abdullah, 2016. "Detailing the co-authorship networks in degree coupling, edge weight and academic age perspective," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 386-392.
    2. Susan Biancani & Daniel McFarland, 2013. "Social Networks Research in Higher Education," Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 4, pages 85-126.
    3. Tokmachev, Andrey M., 2023. "Regular collective dynamics of research collaboration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    4. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2018. "Identifying important scholars via directed scientific collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1327-1343, March.
    5. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    6. Schall, Daniel, 2013. "Measuring contextual partner importance in scientific collaboration networks," Journal of Informetrics, Elsevier, vol. 7(3), pages 730-736.
    7. Laurent R. Bergé, 2017. "Network proximity in the geography of research collaboration," Papers in Regional Science, Wiley Blackwell, vol. 96(4), pages 785-815, November.
    8. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    9. Svein Kyvik & Ingvild Reymert, 2017. "Research collaboration in groups and networks: differences across academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 951-967, November.
    10. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    11. Yunwei Chen & Katy Börner & Shu Fang, 2013. "Evolving collaboration networks in Scientometrics in 1978–2010: a micro–macro analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 1051-1070, June.
    12. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    13. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    14. Jie Gao & Cui Huang & Jun Su & Qijun Xie, 2019. "Examining the Factors Behind the Success and Sustainability of China’s Creative Research Group: An Extension of the Teamwork Quality Model," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    15. Elizabeth S. Vieira & Jorge Cerdeira, 2022. "The integration of African countries in international research networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1995-2021, April.
    16. Maxim Kotsemir & Tatiana Kuznetsova & Elena Nasybulina & Anna Pikalova, 2015. "Identifying Directions for Russia’s Science and Technology Cooperation," Foresight-Russia Форсайт, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 9(4 (eng)), pages 54-72.
    17. Leonardo Costa Ribeiro & Márcia Siqueira Rapini & Leandro Alves Silva & Eduardo Motta Albuquerque, 2018. "Growth patterns of the network of international collaboration in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 159-179, January.
    18. Zaida Chinchilla-Rodríguez & Cassidy R Sugimoto & Vincent Larivière, 2019. "Follow the leader: On the relationship between leadership and scholarly impact in international collaborations," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-18, June.
    19. Fabio Landini & Franco Malerba & Roberto Mavilia, 2015. "The structure and dynamics of networks of scientific collaborations in Northern Africa," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1787-1807, December.
    20. Lili Wang & Xianwen Wang & Niels J. Philipsen, 2017. "Network structure of scientific collaborations between China and the EU member states," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 765-781, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1705.06208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.