IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1605.00173.html
   My bibliography  Save this paper

Robustness of mathematical models and technical analysis strategies

Author

Listed:
  • Ahmed Bel Hadj Ayed
  • Gr'egoire Loeper
  • Fr'ed'eric Abergel

Abstract

The aim of this paper is to compare the performances of the optimal strategy under parameters mis-specification and of a technical analysis trading strategy. The setting we consider is that of a stochastic asset price model where the trend follows an unobservable Ornstein-Uhlenbeck process. For both strategies, we provide the asymptotic expectation of the logarithmic return as a function of the model parameters. Finally, numerical examples find that an investment strategy using the cross moving averages rule is more robust than the optimal strategy under parameters mis-specification.

Suggested Citation

  • Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Fr'ed'eric Abergel, 2016. "Robustness of mathematical models and technical analysis strategies," Papers 1605.00173, arXiv.org.
  • Handle: RePEc:arx:papers:1605.00173
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1605.00173
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Blanchet-Scalliet, Christophette & Diop, Awa & Gibson, Rajna & Talay, Denis & Tanre, Etienne, 2007. "Technical analysis compared to mathematical models based methods under parameters mis-specification," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1351-1373, May.
    2. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Fr'ed'eric Abergel, 2015. "Forecasting trends with asset prices," Papers 1504.03934, arXiv.org, revised Apr 2015.
    3. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
    4. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    5. Jörn Sass & Ulrich Haussmann, 2004. "Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain," Finance and Stochastics, Springer, vol. 8(4), pages 553-577, November.
    6. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.),Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    7. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Sofiene El Aoud & Fr'ed'eric Abergel, 2015. "Performance analysis of the optimal strategy under partial information," Papers 1510.03596, arXiv.org.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Zhu, Yingzi & Zhou, Guofu, 2009. "Technical analysis: An asset allocation perspective on the use of moving averages," Journal of Financial Economics, Elsevier, vol. 92(3), pages 519-544, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1605.00173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.