IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1311.3881.html
   My bibliography  Save this paper

Functional Ito Calculus, Path-dependence and the Computation of Greeks

Author

Listed:
  • Samy Jazaerli
  • Yuri F. Saporito

Abstract

Dupire's functional It\^o calculus provides an alternative approach to the classical Malliavin calculus for the computation of sensitivities, also called Greeks, of path-dependent derivatives prices. In this paper, we introduce a measure of path-dependence of functionals within the functional It\^o calculus framework. Namely, we consider the Lie bracket of the space and time functional derivatives, which we use to classify functionals accordingly to their degree of path-dependence. We then revisit the problem of efficient numerical computation of Greeks for path-dependent derivatives using integration by parts techniques. Special attention is paid to path-dependent functionals with zero Lie bracket, called locally weakly path-dependent functionals in our classification. Hence, we derive the weighted-expectation formulas for their Greeks. In the more general case of fully path-dependent functionals, we show that, equipped with the functional It\^o calculus, we are able to analyze the effect of the Lie bracket on the computation of Greeks. Moreover, we are also able to consider the more general dynamics of path-dependent volatility. These were not achieved using Malliavin calculus.

Suggested Citation

  • Samy Jazaerli & Yuri F. Saporito, 2013. "Functional Ito Calculus, Path-dependence and the Computation of Greeks," Papers 1311.3881, arXiv.org, revised Mar 2017.
  • Handle: RePEc:arx:papers:1311.3881
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1311.3881
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.3881. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.