IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1712.07320.html
   My bibliography  Save this paper

First-Order Asymptotics of Path-Dependent Derivatives in Multiscale Stochastic Volatility Environment

Author

Listed:
  • Yuri F. Saporito

Abstract

In this paper, we extend the first-order asymptotics analysis of Fouque et al. to general path-dependent financial derivatives using Dupire's functional Ito calculus. The main conclusion is that the market group parameters calibrated to vanilla options can be used to price to the same order exotic, path-dependent derivatives as well. Under general conditions, the first-order condition is represented by a conditional expectation that could be numerically evaluated. Moreover, if the path-dependence is not too severe, we are able to find path-dependent closed-form solutions equivalent to the fist-order approximation of path-independent options derived in Fouque et al. Additionally, we exemplify the results with Asian options and options on quadratic variation.

Suggested Citation

  • Yuri F. Saporito, 2017. "First-Order Asymptotics of Path-Dependent Derivatives in Multiscale Stochastic Volatility Environment," Papers 1712.07320, arXiv.org.
  • Handle: RePEc:arx:papers:1712.07320
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1712.07320
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Samy Jazaerli & Yuri F. Saporito, 2013. "Functional Ito Calculus, Path-dependence and the Computation of Greeks," Papers 1311.3881, arXiv.org, revised Jun 2018.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri F. Saporito, 2020. "Pricing Path-Dependent Derivatives under Multiscale Stochastic Volatility Models: a Malliavin Representation," Papers 2005.04297, arXiv.org.
    2. Ofelia Bonesini & Antoine Jacquier & Chloe Lacombe, 2020. "A theoretical analysis of Guyon's toy volatility model," Papers 2001.05248, arXiv.org, revised Nov 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    2. Archil Gulisashvili & Peter Laurence, 2013. "The Heston Riemannian distance function," Papers 1302.2337, arXiv.org.
    3. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    4. Dassios, Angelos & Li, Luting, 2020. "Explicit asymptotic on first passage times of diffusion processes," LSE Research Online Documents on Economics 103087, London School of Economics and Political Science, LSE Library.
    5. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Papers 1810.04868, arXiv.org, revised Nov 2019.
    6. Jeonggyu Huh, 2018. "Measuring Systematic Risk with Neural Network Factor Model," Papers 1809.04925, arXiv.org.
    7. Tsekrekos, Andrianos E. & Yannacopoulos, Athanasios N., 2016. "Optimal switching decisions under stochastic volatility with fast mean reversion," European Journal of Operational Research, Elsevier, vol. 251(1), pages 148-157.
    8. Shican Liu & Yanli Zhou & Benchawan Wiwatanapataphee & Yonghong Wu & Xiangyu Ge, 2018. "The Study of Utility Valuation of Single-Name Credit Derivatives with the Fast-Scale Stochastic Volatility Correction," Sustainability, MDPI, vol. 10(4), pages 1-21, March.
    9. Kim, See-Woo & Kim, Jeong-Hoon, 2019. "Variance swaps with double exponential Ornstein-Uhlenbeck stochastic volatility," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 149-169.
    10. J.-P. Fouque & Y. F. Saporito, 2018. "Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1003-1016, June.
    11. Kim, Seong-Tae & Kim, Jeong-Hoon, 2020. "Stochastic elasticity of vol-of-vol and pricing of variance swaps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 420-440.
    12. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2019. "Comparative Study of Two Extensions of Heston Stochastic Volatility Model," Papers 1912.10237, arXiv.org.
    13. Weston Barger & Matthew Lorig, 2016. "Approximate pricing of European and Barrier claims in a local-stochastic volatility setting," Papers 1610.05728, arXiv.org, revised Apr 2017.
    14. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    15. Sun-Yong Choi & Sotheara Veng & Jeong-Hoon Kim & Ji-Hun Yoon, 2022. "A Mellin Transform Approach to the Pricing of Options with Default Risk," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1113-1134, March.
    16. Cao, Jiling & Kim, Jeong-Hoon & Li, Xi & Zhang, Wenjun, 2023. "Valuation of barrier and lookback options under hybrid CEV and stochastic volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 660-676.
    17. Zhang, Sumei & Gao, Xiong, 2019. "An asymptotic expansion method for geometric Asian options pricing under the double Heston model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 1-9.
    18. Min-Ku Lee & See-Woo Kim & Jeong-Hoon Kim, 2022. "Variance Swaps Under Multiscale Stochastic Volatility of Volatility," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 39-64, March.
    19. Jean-Pierre Fouque & Ning Ning, 2017. "Uncertain Volatility Models with Stochastic Bounds," Papers 1702.05036, arXiv.org.
    20. Zaineb Mezdoud & Carsten Hartmann & Mohamed Riad Remita & Omar Kebiri, 2021. "$\alpha$-Hypergeometric Uncertain Volatility Models and their Connection to 2BSDEs," Papers 2108.06965, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.07320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.