IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1311.0236.html

Variance matters (in stochastic dividend discount models)

Author

Listed:
  • Arianna Agosto
  • Enrico Moretto

Abstract

Stochastic dividend discount models (Hurley and Johnson, 1994 and 1998, Yao, 1997) present expressions for the expected value of stock prices when future dividends evolve according to some random scheme. In this paper we try to offer a more precise view on this issue proposing a closed-form formula for the variance of stock prices.

Suggested Citation

  • Arianna Agosto & Enrico Moretto, 2013. "Variance matters (in stochastic dividend discount models)," Papers 1311.0236, arXiv.org.
  • Handle: RePEc:arx:papers:1311.0236
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1311.0236
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guglielmo D'Amico, 2016. "Generalized semi-Markovian dividend discount model: risk and return," Papers 1605.02472, arXiv.org.
    2. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
    3. Vlad Stefan Barbu & Guglielmo D’Amico & Riccardo Blasis, 2017. "Novel advancements in the Markov chain stock model: analysis and inference," Annals of Finance, Springer, vol. 13(2), pages 125-152, May.
    4. Guglielmo D'Amico & Riccardo De Blasis, 2020. "A review of the Dividend Discount Model: from deterministic to stochastic models," Papers 2001.00465, arXiv.org.
    5. D'Amico, Guglielmo & De Blasis, Riccardo, 2024. "Dividend based risk measures: A Markov chain approach," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    6. Guglielmo D’Amico & Ada Lika & Filippo Petroni, 2019. "Change point dynamics for financial data: an indexed Markov chain approach," Annals of Finance, Springer, vol. 15(2), pages 247-266, June.
    7. Arianna Agosto & Alessandra Mainini & Enrico Moretto, 2019. "Stochastic dividend discount model: covariance of random stock prices," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 43(3), pages 552-568, July.
    8. Arianna Agosto & Alessandra Mainini & Enrico Moretto, 2016. "Covariance of random stock prices in the Stochastic Dividend Discount Model," Papers 1609.03029, arXiv.org, revised Apr 2017.
    9. Battulga Gankhuu, 2022. "Augmented Dynamic Gordon Growth Model," Papers 2201.06012, arXiv.org, revised Sep 2024.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.0236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.