IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-01467857.html
   My bibliography  Save this paper

A novel multivariate risk measure: the Kendall VaR

Author

Listed:
  • Matthieu Garcin

    (Natixis Asset Management, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Bertrand Hassani

    (Grupo Santander, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne)

Abstract

The definition of multivariate Value at Risk is a challenging problem, whose most common solutions are given by the lower- and upper-orthant VaRs, which are based on copulas: the lower-orthant VaR is indeed the quantile of the multivariate distribution function, whereas the upper-orthant VaR is the quantile of the multivariate survival function. In this paper we introduce a new approach introducing a total-order multivariate Value at Risk, referred to as the Kendall Value at Risk, which links the copula approach to an alternative definition of multivariate quantiles, known as the quantile surface, which is not used in finance, to our knowledge. We more precisely transform the notion of orthant VaR thanks to the Kendall function so as to get a multivariate VaR with some advantageous properties compared to the standard orthant VaR: it is based on a total order and, for a non-atomic and Rd-supported density function, there is no distinction anymore between the d-dimensional VaRs based on the distribution function or on the survival function. We quantify the differences between this new kendall VaR and orthant VaRs. In particular, we show that the Kendall VaR is less (respectively more) conservative than the lower-orthant (resp. upper-orthant) VaR. The definition and the properties of the Kendall VaR are illustrated using Gumbel and Clayton copulas with lognormal marginal distributions and several levels of risk.

Suggested Citation

  • Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467857, HAL.
  • Handle: RePEc:hal:cesptp:halshs-01467857
    Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-01467857v2
    as

    Download full text from publisher

    File URL: https://halshs.archives-ouvertes.fr/halshs-01467857v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominique Guegan & Pierre-André Maugis, 2008. "New prospects on vines," Documents de travail du Centre d'Economie de la Sorbonne b08095, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Mar 2010.
    2. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    3. Embrechts, Paul & Puccetti, Giovanni, 2006. "Bounds for functions of multivariate risks," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 526-547, February.
    4. Areski Cousin & Elena Di Bernadino, 2013. "On Multivariate Extensions of Value-at-Risk," Working Papers hal-00638382, HAL.
    5. Matthieu Garcin & Dominique Guegan, 2012. "Extreme values of random or chaotic discretization steps," Documents de travail du Centre d'Economie de la Sorbonne 12033, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. repec:hal:wpaper:halshs-00721339 is not listed on IDEAS
    7. Cousin, Areski & Di Bernardino, Elena, 2013. "On multivariate extensions of Value-at-Risk," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 32-46.
    8. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    9. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
    10. Dominique Guegan & Matthieu Garcin, 2012. "Extreme values of random or chaotic discretization steps and connected networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00750231, HAL.
    11. Dominique Guegan & Pierre-André Maugis, 2010. "An Econometric Study of Vine Copulas," Documents de travail du Centre d'Economie de la Sorbonne 10040, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    12. Matthieu Garcin & Dominique Guegan, 2012. "Extreme values of random or chaotic discretization steps," Post-Print hal-00706825, HAL.
    13. Dominique Guegan & Pierre-André Maugis, 2010. "An Econometric Study of Vine Copulas," Post-Print halshs-00492124, HAL.
    14. Areski Cousin & Elena Di Bernadino, 2011. "On Multivariate Extensions of Value-at-Risk," Papers 1111.1349, arXiv.org, revised Apr 2013.
    15. repec:dau:papers:123456789/353 is not listed on IDEAS
    16. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.
    3. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Post-Print halshs-01467857, HAL.
    4. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.
    5. Hélène Cossette & Mélina Mailhot & Étienne Marceau & Mhamed Mesfioui, 2016. "Vector-Valued Tail Value-at-Risk and Capital Allocation," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 653-674, September.
    6. Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
    7. Di Bernardino, E. & Fernández-Ponce, J.M. & Palacios-Rodríguez, F. & Rodríguez-Griñolo, M.R., 2015. "On multivariate extensions of the conditional Value-at-Risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 1-16.
    8. Elena Di Bernardino & Clémentine Prieur, 2014. "Estimation of multivariate conditional-tail-expectation using Kendall's process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 241-267, June.
    9. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    10. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
    11. Areski Cousin & Elena Di Bernardino, 2013. "On Multivariate Extensions of Conditional-Tail-Expectation," Working Papers hal-00877386, HAL.
    12. Zhu, Yunzhou & Chi, Yichun & Weng, Chengguo, 2014. "Multivariate reinsurance designs for minimizing an insurer’s capital requirement," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 144-155.
    13. Hamel, Andreas H. & Kostner, Daniel, 2018. "Cone distribution functions and quantiles for multivariate random variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 97-113.
    14. Elena Bernardino & Thomas Laloë & Rémi Servien, 2015. "Estimating covariate functions associated to multivariate risks: a level set approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 497-526, July.
    15. Daouia, Abdelaati & Paindaveine, Davy, 2019. "From Halfspace M-Depth to Multiple-output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE).
    16. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    17. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Multivariate Extensions Of Expectiles Risk Measures," Working Papers hal-01367277, HAL.
    18. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    19. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    20. Cousin, Areski & Di Bernardino, Elena, 2013. "On multivariate extensions of Value-at-Risk," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 32-46.

    More about this item

    Keywords

    total order; copula; Value at Risk; multivariate quantile; risk measure; Kendall function;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-01467857. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.