IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.3110.html
   My bibliography  Save this paper

Some applications of first-passage ideas to finance

Author

Listed:
  • R'emy Chicheportiche
  • Jean-Philippe Bouchaud

Abstract

Many problems in finance are related to first passage times. Among all of them, we chose three on which we contributed personally. Our first example relates Kolmogorov-Smirnov like goodness-of-fit tests, modified in such a way that tail events and core events contribute equally to the test (in the standard Kolmogorov-Smirnov, the tails contribute very little to the measure of goodness-of-fit). We show that this problem can be mapped onto that of a random walk inside moving walls. The second example is the optimal time to sell an asset (modelled as a random walk with drift) such that the sell time is as close as possible to the time at which the asset reaches its maximum value. The last example concerns optimal trading in the presence of transaction costs. In this case, the optimal strategy is to wait until the predictor reaches (plus or minus) a threshold value before buying or selling. The value of this threshold is found by mapping the problem onto that of a random walk between two walls.

Suggested Citation

  • R'emy Chicheportiche & Jean-Philippe Bouchaud, 2013. "Some applications of first-passage ideas to finance," Papers 1306.3110, arXiv.org.
  • Handle: RePEc:arx:papers:1306.3110
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.3110
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    2. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "Weighted Kolmogorov-Smirnov test: Accounting for the tails," Papers 1207.7308, arXiv.org, revised Oct 2012.
    3. Albert Shiryaev & Zuoquan Xu & Xun Yu Zhou, 2008. "Response to comment on 'Thou shalt buy and hold'," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 761-762.
    4. Remy Chicheportiche & Jean-Philippe Bouchaud, 2011. "Goodness-of-Fit tests with Dependent Observations," Papers 1106.3016, arXiv.org, revised Aug 2011.
    5. Albert Shiryaev & Zuoquan Xu & Xun Yu Zhou, 2008. "Thou shalt buy and hold," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 765-776.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.3110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.