IDEAS home Printed from
   My bibliography  Save this paper

Sparsifying Defaults: Optimal Bailout Policies for Financial Networks in Distress


  • Zhang Li
  • Ilya Pollak


The events of the last few years revealed an acute need for tools to systematically model and analyze large financial networks. Many applications of such tools include the forecasting of systemic failures and analyzing probable effects of economic policy decisions. We consider optimizing the amount and structure of a bailout in a borrower-lender network: Given a fixed amount of cash to be injected into the system, how should it be distributed among the nodes in order to achieve the smallest overall amount of unpaid liabilities or the smallest number of nodes in default? We develop an exact algorithm for the problem of minimizing the amount of unpaid liabilities, by showing that it is equivalent to a linear program. For the problem of minimizing the number of defaults, we develop an approximate algorithm using a reweighted l1 minimization approach. We illustrate this algorithm using an example with synthetic data for which the optimal solution can be calculated exactly, and show through numerical simulation that the solutions calculated by our algorithm are close to optimal.

Suggested Citation

  • Zhang Li & Ilya Pollak, 2012. "Sparsifying Defaults: Optimal Bailout Policies for Financial Networks in Distress," Papers 1209.3982,
  • Handle: RePEc:arx:papers:1209.3982

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1209.3982. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.