IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Minimax Option Pricing Meets Black-Scholes in the Limit

  • Jacob Abernethy
  • Rafael M. Frongillo
  • Andre Wibisono
Registered author(s):

    Option contracts are a type of financial derivative that allow investors to hedge risk and speculate on the variation of an asset's future market price. In short, an option has a particular payout that is based on the market price for an asset on a given date in the future. In 1973, Black and Scholes proposed a valuation model for options that essentially estimates the tail risk of the asset price under the assumption that the price will fluctuate according to geometric Brownian motion. More recently, DeMarzo et al., among others, have proposed more robust valuation schemes, where we can even assume an adversary chooses the price fluctuations. This framework can be considered as a sequential two-player zero-sum game between the investor and Nature. We analyze the value of this game in the limit, where the investor can trade at smaller and smaller time intervals. Under weak assumptions on the actions of Nature (an adversary), we show that the minimax option price asymptotically approaches exactly the Black-Scholes valuation. The key piece of our analysis is showing that Nature's minimax optimal dual strategy converges to geometric Brownian motion in the limit.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1202.2585
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1202.2585.

    as
    in new window

    Length:
    Date of creation: Feb 2012
    Date of revision:
    Handle: RePEc:arx:papers:1202.2585
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. repec:cup:cbooks:9780521784504 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1202.2585. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.