IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1202.2585.html
   My bibliography  Save this paper

Minimax Option Pricing Meets Black-Scholes in the Limit

Author

Listed:
  • Jacob Abernethy
  • Rafael M. Frongillo
  • Andre Wibisono

Abstract

Option contracts are a type of financial derivative that allow investors to hedge risk and speculate on the variation of an asset's future market price. In short, an option has a particular payout that is based on the market price for an asset on a given date in the future. In 1973, Black and Scholes proposed a valuation model for options that essentially estimates the tail risk of the asset price under the assumption that the price will fluctuate according to geometric Brownian motion. More recently, DeMarzo et al., among others, have proposed more robust valuation schemes, where we can even assume an adversary chooses the price fluctuations. This framework can be considered as a sequential two-player zero-sum game between the investor and Nature. We analyze the value of this game in the limit, where the investor can trade at smaller and smaller time intervals. Under weak assumptions on the actions of Nature (an adversary), we show that the minimax option price asymptotically approaches exactly the Black-Scholes valuation. The key piece of our analysis is showing that Nature's minimax optimal dual strategy converges to geometric Brownian motion in the limit.

Suggested Citation

  • Jacob Abernethy & Rafael M. Frongillo & Andre Wibisono, 2012. "Minimax Option Pricing Meets Black-Scholes in the Limit," Papers 1202.2585, arXiv.org.
  • Handle: RePEc:arx:papers:1202.2585
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1202.2585
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, June.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henry Lam & Zhenming Liu, 2014. "From Black-Scholes to Online Learning: Dynamic Hedging under Adversarial Environments," Papers 1406.6084, arXiv.org.
    2. Sebastian E. Ferrando & Alfredo L. Gonzalez & Ivan L. Degano & Massoome Rahsepar, 2014. "Discrete, Non Probabilistic Market Models. Arbitrage and Pricing Intervals," Papers 1407.1769, arXiv.org, revised Nov 2015.
    3. Tushar Vaidya & Carlos Murguia & Georgios Piliouras, 2017. "Learning Agents in Black-Scholes Financial Markets: Consensus Dynamics and Volatility Smiles," Papers 1704.07597, arXiv.org, revised Jul 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    3. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    4. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    5. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    6. Paul Ormerod, 2010. "La crisis actual y la culpabilidad de la teoría macroeconómica," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 12(22), pages 111-128, January-J.
    7. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    8. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    9. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    10. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    11. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    12. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    13. Dammak, Wael & Frikha, Wajdi & Souissi, Mohamed Naceur, 2024. "Market turbulence and investor decision-making in currency option market," The Journal of Economic Asymmetries, Elsevier, vol. 30(C).
    14. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    15. Jeremy Leake, 2003. "Credit spreads on sterling corporate bonds and the term structure of UK interest rates," Bank of England working papers 202, Bank of England.
    16. Suleyman Basak & Georgy Chabakauri, 2012. "Dynamic Hedging in Incomplete Markets: A Simple Solution," The Review of Financial Studies, Society for Financial Studies, vol. 25(6), pages 1845-1896.
    17. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    18. Kuang, Yu Flora & Qin, Bo, 2009. "Performance-vested stock options and interest alignment," The British Accounting Review, Elsevier, vol. 41(1), pages 46-61.
    19. Dubey, Pradeep & Sondermann, Dieter, 2009. "Perfect competition in an oligopoly (including bilateral monopoly)," Games and Economic Behavior, Elsevier, vol. 65(1), pages 124-141, January.
    20. Saphores, J.D. & Khalaf, L. & Pelletier, D., 2000. "On Jumps and ARCH Effects in Natural Resource Prices. An Application to Stumpage Prices from Pacific Northwest National Forests," Papers 00-03, Laval - Recherche en Energie.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1202.2585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.