IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1202.2585.html
   My bibliography  Save this paper

Minimax Option Pricing Meets Black-Scholes in the Limit

Author

Listed:
  • Jacob Abernethy
  • Rafael M. Frongillo
  • Andre Wibisono

Abstract

Option contracts are a type of financial derivative that allow investors to hedge risk and speculate on the variation of an asset's future market price. In short, an option has a particular payout that is based on the market price for an asset on a given date in the future. In 1973, Black and Scholes proposed a valuation model for options that essentially estimates the tail risk of the asset price under the assumption that the price will fluctuate according to geometric Brownian motion. More recently, DeMarzo et al., among others, have proposed more robust valuation schemes, where we can even assume an adversary chooses the price fluctuations. This framework can be considered as a sequential two-player zero-sum game between the investor and Nature. We analyze the value of this game in the limit, where the investor can trade at smaller and smaller time intervals. Under weak assumptions on the actions of Nature (an adversary), we show that the minimax option price asymptotically approaches exactly the Black-Scholes valuation. The key piece of our analysis is showing that Nature's minimax optimal dual strategy converges to geometric Brownian motion in the limit.

Suggested Citation

  • Jacob Abernethy & Rafael M. Frongillo & Andre Wibisono, 2012. "Minimax Option Pricing Meets Black-Scholes in the Limit," Papers 1202.2585, arXiv.org.
  • Handle: RePEc:arx:papers:1202.2585
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1202.2585
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1202.2585. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.