IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1112.0210.html
   My bibliography  Save this paper

Mesoscopic approach to minority games in herd regime

Author

Listed:
  • Karol Wawrzyniak
  • Wojciech Wislicki

Abstract

We study minority games in efficient regime. By incorporating the utility function and aggregating agents with similar strategies we develop an effective mesoscale notion of state of the game. Using this approach, the game can be represented as a Markov process with substantially reduced number of states with explicitly computable probabilities. For any payoff, the finiteness of the number of states is proved. Interesting features of an extensive random variable, called aggregated demand, viz. its strong inhomogeneity and presence of patterns in time, can be easily interpreted. Using Markov theory and quenched disorder approach, we can explain important macroscopic characteristics of the game: behavior of variance per capita and predictability of the aggregated demand. We prove that in case of linear payoff many attractors in the state space are possible.

Suggested Citation

  • Karol Wawrzyniak & Wojciech Wislicki, 2011. "Mesoscopic approach to minority games in herd regime," Papers 1112.0210, arXiv.org.
  • Handle: RePEc:arx:papers:1112.0210
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1112.0210
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Challet, Damien, 2008. "Inter-pattern speculation: Beyond minority, majority and $-games," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 85-100, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karol Wawrzyniak & Wojciech Wi'slicki, 2013. "Grand canonical minority game as a sign predictor," Papers 1309.3399, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anindya S. Chakrabarti & Diptesh Ghosh, 2019. "Emergence of anti-coordination through reinforcement learning in generalized minority games," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 225-245, June.
    2. Shubham Agarwal & Diptesh Ghosh & Anindya S. Chakrabarti, 2016. "Self-organization in a distributed coordination game through heuristic rules," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(12), pages 1-10, December.
    3. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    4. Takero Ibuki & Jun-ichi Inoue, 2011. "Response of double-auction markets to instantaneous Selling–Buying signals with stochastic Bid–Ask spread," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(2), pages 93-120, November.
    5. Ren, F. & Zhang, Y.C., 2008. "Trading model with pair pattern strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5523-5534.
    6. Li-Xin Zhong & Wen-Juan Xu & Fei Ren & Yong-Dong Shi, 2012. "Coupled effects of market impact and asymmetric sensitivity in financial markets," Papers 1209.3399, arXiv.org, revised Jan 2013.
    7. Zhong, Li-Xin & Xu, Wen-Juan & Ren, Fei & Shi, Yong-Dong, 2013. "Coupled effects of market impact and asymmetric sensitivity in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2139-2149.
    8. Li-Xin Zhong & Wen-Juan Xu & Ping Huang & Chen-Yang Zhong & Tian Qiu, 2013. "Self-organization and phase transition in financial markets with multiple choices," Papers 1312.0690, arXiv.org, revised Jun 2014.
    9. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    10. Luca Grilli & Angelo Sfrecola, 2005. "Neural Networks to Predict Financial Time Series in a Minority Game Context," Quaderni DSEMS 14-2005, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    11. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    12. Bryce Morsky & Fuwei Zhuang & Zuojun Zhou, 2023. "Social and individual learning in the Minority Game," Papers 2307.11846, arXiv.org, revised Mar 2024.
    13. Ted Theodosopoulos & Ming Yuen, 2006. "Imbalance attractors for a strategic model of market microstructure," Papers math/0605421, arXiv.org.
    14. B. A. Mello & V. M.C.S. Souza & D. O. Cajueiro & R. F.S. Andrade, 2010. "Network evolution based on minority game with herding behavior," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 76(1), pages 147-156, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.0210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.