IDEAS home Printed from
   My bibliography  Save this paper

Detecting Collusive Cliques in Futures Markets Based on Trading Behaviors from Real Data


  • Junjie Wang
  • Shuigeng Zhou
  • Jihong Guan


In financial markets, abnormal trading behaviors pose a serious challenge to market surveillance and risk management. What is worse, there is an increasing emergence of abnormal trading events that some experienced traders constitute a collusive clique and collaborate to manipulate some instruments, thus mislead other investors by applying similar trading behaviors for maximizing their personal benefits. In this paper, a method is proposed to detect the hidden collusive cliques involved in an instrument of future markets by first calculating the correlation coefficient between any two eligible unified aggregated time series of signed order volume, and then combining the connected components from multiple sparsified weighted graphs constructed by using the correlation matrices where each correlation coefficient is over a user-specified threshold. Experiments conducted on real order data from the Shanghai Futures Exchange show that the proposed method can effectively detect suspect collusive cliques. A tool based on the proposed method has been deployed in the exchange as a pilot application for futures market surveillance and risk management.

Suggested Citation

  • Junjie Wang & Shuigeng Zhou & Jihong Guan, 2011. "Detecting Collusive Cliques in Futures Markets Based on Trading Behaviors from Real Data," Papers 1110.1522,
  • Handle: RePEc:arx:papers:1110.1522

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Jan Hansen & Carsten Schmidt & Martin Strobel, 2004. "Manipulation in political stock markets - preconditions and evidence," Applied Economics Letters, Taylor & Francis Journals, vol. 11(7), pages 459-463.
    2. Khwaja, Asim Ijaz & Mian, Atif, 2005. "Unchecked intermediaries: Price manipulation in an emerging stock market," Journal of Financial Economics, Elsevier, vol. 78(1), pages 203-241, October.
    3. Franklin Allen & Lubomir Litov & Jianping Mei, 2006. "Large Investors, Price Manipulation, and Limits to Arbitrage: An Anatomy of Market Corners," Review of Finance, European Finance Association, vol. 10(4), pages 645-693, December.
    4. Rajesh K. Aggarwal & Guojun Wu, 2006. "Stock Market Manipulations," The Journal of Business, University of Chicago Press, vol. 79(4), pages 1915-1954, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1110.1522. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.