IDEAS home Printed from
   My bibliography  Save this paper

Time-Bridge Estimators of Integrated Variance


  • A. Saichev
  • D. Sornette


We present a set of log-price integrated variance estimators, equal to the sum of open-high-low-close bridge estimators of spot variances within $n$ subsequent time-step intervals. The main characteristics of some of the introduced estimators is to take into account the information on the occurrence times of the high and low values. The use of the high's and low's of the bridge associated with the original process makes the estimators significantly more efficient that the standard realized variance estimators and its generalizations. Adding the information on the occurrence times of the high and low values improves further the efficiency of the estimators, much above those of the well-known realized variance estimator and those derived from the sum of Garman and Klass spot variance estimators. The exact analytical results are derived for the case where the underlying log-price process is an It\^o stochastic process. Our results suggests more efficient ways to record financial prices at intermediate frequencies.

Suggested Citation

  • A. Saichev & D. Sornette, 2011. "Time-Bridge Estimators of Integrated Variance," Papers 1108.2611,
  • Handle: RePEc:arx:papers:1108.2611

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    2. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    4. Jain, Satish (ed.), 2010. "Law and Economics," OUP Catalogue, Oxford University Press, number 9780198067733.
    5. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    6. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1108.2611. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.