IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1103.0606.html
   My bibliography  Save this paper

Bayesian Model Choice of Grouped t-copula

Author

Listed:
  • Xiaolin Luo
  • Pavel V. Shevchenko

Abstract

One of the most popular copulas for modeling dependence structures is t-copula. Recently the grouped t-copula was generalized to allow each group to have one member only, so that a priori grouping is not required and the dependence modeling is more flexible. This paper describes a Markov chain Monte Carlo (MCMC) method under the Bayesian inference framework for estimating and choosing t-copula models. Using historical data of foreign exchange (FX) rates as a case study, we found that Bayesian model choice criteria overwhelmingly favor the generalized t-copula. In addition, all the criteria also agree on the second most likely model and these inferences are all consistent with classical likelihood ratio tests. Finally, we demonstrate the impact of model choice on the conditional Value-at-Risk for portfolios of six major FX rates.

Suggested Citation

  • Xiaolin Luo & Pavel V. Shevchenko, 2011. "Bayesian Model Choice of Grouped t-copula," Papers 1103.0606, arXiv.org.
  • Handle: RePEc:arx:papers:1103.0606
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1103.0606
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylvia Fruhwirth-Schnatter, 2004. "Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 143-167, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jochmann Markus & Koop Gary, 2015. "Regime-switching cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
    2. Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.
    3. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    4. repec:rim:rimwps:26-08 is not listed on IDEAS
    5. Philippe J. Deschamps, 2008. "Comparing smooth transition and Markov switching autoregressive models of US unemployment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 435-462.
    6. Xiaolin Luo & Pavel V. Shevchenko, 2012. "Bayesian Model Choice of Grouped t-Copula," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1097-1119, December.
    7. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    8. Philippe J. Deschamps, 2008. "Comparing smooth transition and Markov switching autoregressive models of US unemployment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 435-462.
    9. Bauwens, Luc & De Backer, Bruno & Dufays, Arnaud, 2014. "A Bayesian method of change-point estimation with recurrent regimes: Application to GARCH models," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 207-229.
    10. Rufo, M.J. & Martín, J. & Pérez, C.J., 2010. "New approaches to compute Bayes factor in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3324-3335, December.
    11. van Dijk, A. & van Rosmalen, J.M. & Paap, R., 2009. "A Bayesian approach to two-mode clustering," Econometric Institute Research Papers EI 2009-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Guérin, Pierre & Leiva-Leon, Danilo, 2017. "Model averaging in Markov-switching models: Predicting national recessions with regional data," Economics Letters, Elsevier, vol. 157(C), pages 45-49.
    13. Sylvia Kaufmann, 2016. "Hidden Markov models in time series, with applications in economics," Working Papers 16.06, Swiss National Bank, Study Center Gerzensee.
    14. Sylvia Kaufmann & Maria Teresa Valderrama, 2010. "The Role Of Credit Aggregates And Asset Prices In The Transmission Mechanism: A Comparison Between The Euro Area And The Usa," Manchester School, University of Manchester, vol. 78(4), pages 345-377, July.
    15. Sylvia Kaufmann & Maria Teresa Valderrama, 2004. "Modeling Credit Aggregates," Working Papers 90, Oesterreichische Nationalbank (Austrian Central Bank).
    16. Lhuissier, Stéphane, 2018. "The Regime-Switching Volatility Of Euro Area Business Cycles," Macroeconomic Dynamics, Cambridge University Press, vol. 22(2), pages 426-469, March.
    17. BAUWENS, Luc & DUFAYS, Arnaud & DE BACKER, Bruno, 2011. "Estimating and forecasting structural breaks in financial time series," LIDAM Discussion Papers CORE 2011055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Matthieu Droumaguet & Tomasz Wozniak, 2012. "Bayesian Testing of Granger Causality in Markov-Switching VARs," Economics Working Papers ECO2012/06, European University Institute.
    19. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2010. "Dynamic Probabilities of Restrictions in State Space Models: An Application to the Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 370-379.
    20. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    21. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1103.0606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.