IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i12p3324-3335.html
   My bibliography  Save this article

New approaches to compute Bayes factor in finite mixture models

Author

Listed:
  • Rufo, M.J.
  • Martín, J.
  • Pérez, C.J.

Abstract

Two new approaches to estimate Bayes factors in a finite mixture model context are proposed. Specifically, two algorithms to estimate them and their errors are derived by decomposing the resulting marginal densities. Then, through Bayes factor comparisons, the appropriate number of components for the mixture model is obtained. The approaches are based on simple theory (Monte Carlo methods and cluster sampling), what makes them appealing tools in this context. The performance of both algorithms is studied for different situations and the procedures are illustrated with some previously published data sets.

Suggested Citation

  • Rufo, M.J. & Martín, J. & Pérez, C.J., 2010. "New approaches to compute Bayes factor in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3324-3335, December.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3324-3335
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00189-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siddhartha Chib & Ivan Jeliazkov, 2005. "Accept–reject Metropolis–Hastings sampling and marginal likelihood estimation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 30-44, February.
    2. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    3. Song, Xin-Yuan & Lee, Sik-Yum, 2002. "A Bayesian model selection method with applications," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 539-557, September.
    4. Papastamoulis, Panagiotis & Iliopoulos, George, 2009. "Reversible Jump MCMC in mixtures of normal distributions with the same component means," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 900-911, February.
    5. Olivier Cappé & Christian P. Robert & Tobias Rydén, 2003. "Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 679-700, August.
    6. repec:dau:papers:123456789/3692 is not listed on IDEAS
    7. Bohning, Dankmar & Seidel, Wilfried, 2003. "Editorial: recent developments in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 349-357, January.
    8. Congdon, Peter, 2006. "Bayesian model choice based on Monte Carlo estimates of posterior model probabilities," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 346-357, January.
    9. Bohning, Dankmar & Seidel, Wilfried & Alfo, Macro & Garel, Bernard & Patilea, Valentin & Walther, Gunther, 2007. "Advances in Mixture Models," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5205-5210, July.
    10. Francesco Bartolucci & Luisa Scaccia & Antonietta Mira, 2006. "Efficient Bayes factor estimation from the reversible jump output," Biometrika, Biometrika Trust, vol. 93(1), pages 41-52, March.
    11. repec:dau:papers:123456789/6040 is not listed on IDEAS
    12. M. Rufo & J. Martín & C. Pérez, 2006. "Bayesian analysis of finite mixture models of distributions from exponential families," Computational Statistics, Springer, vol. 21(3), pages 621-637, December.
    13. Sylvia Fruhwirth-Schnatter, 2004. "Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 143-167, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rufo, M.J. & Pérez, C.J. & Martín, J., 2009. "Local parametric sensitivity for mixture models of lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1238-1244.
    2. Aßmann, Christian & Boysen-Hogrefe, Jens, 2011. "A Bayesian approach to model-based clustering for binary panel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 261-279, January.
    3. Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.
    4. Rufo, M.J. & Perez, C.J. & Martin, J., 2007. "Bayesian analysis of finite mixtures of multinomial and negative-multinomial distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5452-5466, July.
    5. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    6. M. Rufo & J. Martín & C. Pérez, 2006. "Bayesian analysis of finite mixture models of distributions from exponential families," Computational Statistics, Springer, vol. 21(3), pages 621-637, December.
    7. Kozumi, Hideo, 2004. "Posterior analysis of latent competing risk models by parallel tempering," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 441-458, June.
    8. Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.
    9. Shotwell Matthew S & Slate Elizabeth H, 2010. "Bayesian Modeling of Footrace Finishing Times," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-21, July.
    10. Lu, Zhenqiu (Laura) & Zhang, Zhiyong, 2014. "Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 220-240.
    11. Isaia, A. Durio E.D., 2007. "A quick procedure for model selection in the case of mixture of normal densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5635-5643, August.
    12. Paroli, Roberta & Spezia, Luigi, 2008. "Bayesian inference in non-homogeneous Markov mixtures of periodic autoregressions with state-dependent exogenous variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2311-2330, January.
    13. Montanari, Angela & Calo, Daniela G. & Viroli, Cinzia, 2008. "Independent factor discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3246-3254, February.
    14. Chuku Chuku & Paul Middleditch, 2020. "Characterizing Monetary and Fiscal Policy Rules and Interactions when Commodity Prices Matter," Manchester School, University of Manchester, vol. 88(3), pages 373-404, June.
    15. Juarez, Miguel A. & Steel, Mark F. J., 2006. "Model-based Clustering of non-Gaussian Panel Data," MPRA Paper 880, University Library of Munich, Germany.
    16. Nicolas Chopin & Christian P. Robert, 2010. "Properties of nested sampling," Biometrika, Biometrika Trust, vol. 97(3), pages 741-755.
    17. Jochmann Markus & Koop Gary, 2015. "Regime-switching cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
    18. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    19. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    20. Arman Oganisian & Nandita Mitra & Jason A. Roy, 2021. "A Bayesian nonparametric model for zero‐inflated outcomes: Prediction, clustering, and causal estimation," Biometrics, The International Biometric Society, vol. 77(1), pages 125-135, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3324-3335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.