IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Option pricing under Ornstein-Uhlenbeck stochastic volatility: a linear model

  • Giacomo Bormetti
  • Valentina Cazzola
  • Danilo Delpini
Registered author(s):

    We consider the problem of option pricing under stochastic volatility models, focusing on the linear approximation of the two processes known as exponential Ornstein-Uhlenbeck and Stein-Stein. Indeed, we show they admit the same limit dynamics in the regime of low fluctuations of the volatility process, under which we derive the exact expression of the characteristic function associated to the risk neutral probability density. This expression allows us to compute option prices exploiting a formula derived by Lewis and Lipton. We analyze in detail the case of Plain Vanilla calls, being liquid instruments for which reliable implied volatility surfaces are available. We also compute the analytical expressions of the first four cumulants, that are crucial to implement a simple two steps calibration procedure. It has been tested against a data set of options traded on the Milan Stock Exchange. The data analysis that we present reveals a good fit with the market implied surfaces and corroborates the accuracy of the linear approximation.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/0905.1882
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 0905.1882.

    as
    in new window

    Length:
    Date of creation: May 2009
    Date of revision: May 2010
    Publication status: Published in Int. J. Theoretical Appl. Finance 7 (2010) 1047-1063
    Handle: RePEc:arx:papers:0905.1882
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. A. Dragulescu & V. M. Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Computing in Economics and Finance 2002 127, Society for Computational Economics.
    2. Adrian A. Dragulescu & Victor M. Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Papers cond-mat/0203046, arXiv.org, revised Nov 2002.
    3. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    4. Josep Perello & Ronnie Sircar & Jaume Masoliver, 2008. "Option pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model," Papers 0804.2589, arXiv.org, revised May 2008.
    5. Jaume Masoliver & Josep Perello, 2005. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Papers cond-mat/0501639, arXiv.org.
    6. Stefano Galluccio & Yann Le Cam, 2005. "Implied Calibration of Stochastic Volatility Jump Diffusion Models," Finance 0510028, EconWPA.
    7. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-52.
    8. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N, 2002. "Volatility in financial markets: stochastic models and empirical results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 756-761.
    9. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0905.1882. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.