IDEAS home Printed from https://ideas.repec.org/p/aoz/wpaper/306.html
   My bibliography  Save this paper

¿Cuánto impacta la viticultura sobre la calidad de los recursos hídricos? Un análisis de la Huella Hídrica Gris asociada al uso de pesticidas en una microrregión vitivinícola de Mendoza, Argentina

Author

Listed:
  • Verónica Farreras

    (CCT-CONICET-MZA/Universidad Nacional de Cuyo)

  • Belén Lana

    (CCT-CONICET-MZA/Universidad Nacional de Cuyo)

  • Oscar Astorga

    (Instituto de Sanidad y Calidad Agropecuaria de Mendoza)

Abstract

Distintas plagas y enfermedades pueden dañar los cultivos de vid. El uso de pesticidas garantiza una producción de alta calidad con menos daño a los cultivos y rendimientos constantes. Sin embargo, estas sustancias pueden migrar hacia los cuerpos de agua superficiales o subterráneas a través de la escorrentía y lixiviación, constituyendo una fuente de contaminación difusa. A partir de información específica sobre productos fitosanitarios comercializados en una microrregión vitícola de Mendoza, se evaluó el impacto de los viñedos sobre la calidad de los recursos hídricos. Para ello, se estimó la Huella Hídrica Gris (HHG) de la viticultura asociada a una amplia gama de pesticidas—24 fungicidas, 7 insecticidas y 7 herbicidas—comúnmente utilizados en las prácticas vitícolas locales. Nuestros resultados indican que, durante el periodo de setiembre de 2018 a abril de 2020, la HHG de la viticultura fue de 1.10 m3 kg-1 ó 1.87x108 m3 año-1. Más específicamente, se necesitan de 1.10 m3 de agua por kg de uva o algo más de 187 millones de m3 de agua por año para diluir los contaminantes hasta tal punto que la calidad del agua se mantenga por encima de los estándares de calidad establecidos. Al aumentar la resolución espacial del análisis, se observó una variabilidad de HHG no solo por la diversidad de los principios activos con los que estaban asociadas sino también por la amplitud en el rango de valores que presentaban—de 0.04 a 18.4 m3 kg-1. Nuestros resultados, además de resaltar la utilidad de un análisis a escala local de la HHG, arrojan luz sobre la importancia de considerar en el análisis la amplia gama de pesticidas comúnmente utilizados en las prácticas locales. Esta información puede ser de particular utilidad para diferentes partes interesadas—desde viticultores hasta responsables en la formulación de políticas o en la gestión del territorio—en el desempeño ambiental de la viticultura en el ámbito de la gestión sostenible de los recursos hídricos. Este estudio proporciona un marco que puede guiar evaluaciones similares en otras regiones vitícolas.

Suggested Citation

  • Verónica Farreras & Belén Lana & Oscar Astorga, 2024. "¿Cuánto impacta la viticultura sobre la calidad de los recursos hídricos? Un análisis de la Huella Hídrica Gris asociada al uso de pesticidas en una microrregión vitivinícola de Mendoza, Argentina," Working Papers 306, Red Nacional de Investigadores en Economía (RedNIE).
  • Handle: RePEc:aoz:wpaper:306
    as

    Download full text from publisher

    File URL: https://rednie.eco.unc.edu.ar/files/DT/306.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chapagain, A.K. & Hoekstra, A.Y. & Savenije, H.H.G. & Gautam, R., 2006. "The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries," Ecological Economics, Elsevier, vol. 60(1), pages 186-203, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    2. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    3. Meina Zhou & Junying Wang & Hao Ji, 2023. "Virtual Land and Water Flows and Driving Factors Related to Livestock Products Trade in China," Land, MDPI, vol. 12(8), pages 1-20, July.
    4. Long Zhang & Xiaoyu Luan & Xinyi Chen & Shuhao Zhang & Yukun Liang & Zhaojie Cui, 2022. "Water Footprint Inventory Construction of Cathode Copper Products in a Chinese Eco-Industry," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    5. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    6. Bowe, Colm & der Horst, Dan van, 2015. "Positive externalities, knowledge exchange and corporate farm extension services; a case study on creating shared value in a water scarce area," Ecosystem Services, Elsevier, vol. 15(C), pages 1-10.
    7. Babel, M.S. & Shrestha, B. & Perret, S.R., 2011. "Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand," Agricultural Water Management, Elsevier, vol. 101(1), pages 8-26.
    8. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    9. Chapagain, A.K. & Hoekstra, A.Y., 2007. "The water footprint of coffee and tea consumption in the Netherlands," Ecological Economics, Elsevier, vol. 64(1), pages 109-118, October.
    10. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    11. Esther Velázquez & Cristina Madrid & María Beltrán, 2011. "Rethinking the Concepts of Virtual Water and Water Footprint in Relation to the Production–Consumption Binomial and the Water–Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 743-761, January.
    12. Maite Aldaya & Pedro Martínez-Santos & M. Llamas, 2010. "Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 941-958, March.
    13. Markus Berger & Jazmin Campos & Mauro Carolli & Ianna Dantas & Silvia Forin & Ervin Kosatica & Annika Kramer & Natalia Mikosch & Hamideh Nouri & Anna Schlattmann & Falk Schmidt & Anna Schomberg & Elsa, 2021. "Advancing the Water Footprint into an Instrument to Support Achieving the SDGs – Recommendations from the “Water as a Global Resources” Research Initiative (GRoW)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1291-1298, March.
    14. Chen Cao & Xiaohan Lu & Xuyong Li, 2019. "Risk Assessment and Pressure Response Analysis of the Water Footprint of Agriculture and Livestock: A Case Study of the Beijing–Tianjin–Hebei Region in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    15. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    16. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    17. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    18. Tsigkou, Stavroula & Messer, Kent D. & Kecinski, Maik & Li, Tongzhe, 2021. "The impact of nontraditional irrigation water on consumers’ perception of food and non-food items: A field experiment in the United States," 2021 Annual Meeting, August 1-3, Austin, Texas 313940, Agricultural and Applied Economics Association.
    19. Chai, Li & Liao, Xiawei & Yang, Liu & Yan, Xianglin, 2018. "Assessing life cycle water use and pollution of coal-fired power generation in China using input-output analysis," Applied Energy, Elsevier, vol. 231(C), pages 951-958.
    20. Takeshima, Hiroyuki & Adesugba, Margaret Abiodun, 2014. "Irrigation potential in Nigeria: Some perspectives based on factor endowments, tropical nature, and patterns in favorable areas:," IFPRI discussion papers 1399, International Food Policy Research Institute (IFPRI).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoz:wpaper:306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Inés D Amato (email available below). General contact details of provider: https://edirc.repec.org/data/redniar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.