IDEAS home Printed from https://ideas.repec.org/p/ags/feemcl/172435.html

Sharing R&D Investments in Cleaner Technologies to Mitigate Climate Change

Author

Listed:
  • El-Sayed, Abeer
  • Rubio, Santiago J.

Abstract

This paper examines international cooperation on technological development as an alternative to international cooperation on GHG emission reductions. It is assumed that when countries cooperate they coordinate their investments so as to minimize the agreement costs of controlling emissions and that they also pool their R&D efforts so as to fully internalize the spillover effects of their investments in R&D. In order to analyze the scope of cooperation, an agreement formation game is solved in three stages. First, countries decide whether or not to sign the agreement. Then, in the second stage, signatories (playing together) and non-signatories (playing individually) select their investment in R&D. Finally, in the third stage, each country decides its level of emissions non-cooperatively. For linear environmental damages and quadratic investment costs, our findings show that the maximum participation in a R&D agreement consists of six countries and that participation decreases as the coalition information exchange decreases until a minimum participation consisting of three countries is reached. We also find that the grand coalition is stable if the countries sign an international research joint venture but in this case the effectiveness of the agreement is very low.

Suggested Citation

  • El-Sayed, Abeer & Rubio, Santiago J., 2014. "Sharing R&D Investments in Cleaner Technologies to Mitigate Climate Change," Climate Change and Sustainable Development 172435, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemcl:172435
    DOI: 10.22004/ag.econ.172435
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/172435/files/NDL2014-041.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.172435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Hübler, 2015. "A theory-based discussion of international technology funding," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 313-327, April.
    2. Ward, Hauke & Radebach, Alexander & Vierhaus, Ingmar & Fügenschuh, Armin & Steckel, Jan Christoph, 2017. "Reducing global CO2 emissions with the technologies we have," Resource and Energy Economics, Elsevier, vol. 49(C), pages 201-217.
    3. Ouchida, Yasunori & Goto, Daisaku, 2016. "Environmental research joint ventures and time-consistent emission tax: Endogenous choice of R&D formation," Economic Modelling, Elsevier, vol. 55(C), pages 179-188.
    4. Miguel Borrero & Santiago J. Rubio, 2022. "An adaptation-mitigation game: does adaptation promote participation in international environmental agreements?," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(3), pages 439-479, September.
    5. Achim Hagen & Juan-Carlos Altamirano-Cabrera & Hans-Peter Weikard, 2021. "National political pressure groups and the stability of international environmental agreements," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 21(3), pages 405-425, September.
    6. Xiuqin Zhang & Xudong Shi & Yasir Khan & Taimoor Hassan & Mohamed Marie, 2023. "Carbon Neutrality Challenge: Analyse the Role of Energy Productivity, Renewable Energy, and Collaboration in Climate Mitigation Technology in OECD Economies," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Ni, Jian & Huang, Hongzhi & Wang, Peipei & Zhou, Wei, 2020. "Capacity investment and green R&D in a dynamic oligopoly under the potential shift in environmental damage," Economic Modelling, Elsevier, vol. 88(C), pages 312-319.
    8. Bayramoglu, Basak & Finus, Michael & Jacques, Jean-François, 2018. "Climate agreements in a mitigation-adaptation game," Journal of Public Economics, Elsevier, vol. 165(C), pages 101-113.
    9. Emilson C. D. Silva, 2017. "Self-enforcing agreements under unequal nationally determined contributions," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(4), pages 705-729, August.
    10. Takashima, Nobuyuki, 2023. "Self-enforcing international environmental agreements with third-party organizations: Initial payment, technological development, and refunding," Economics Letters, Elsevier, vol. 228(C).
    11. Hao Xu & Deqing Tan, 2023. "Optimal Abatement Technology Licensing in a Dynamic Transboundary Pollution Game: Fixed Fee Versus Royalty," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 905-935, March.
    12. Hans Gersbach & Marie-Catherine Riekhof, 2022. "Technology Treaties And Climate Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-42, May.
    13. Blasch, Julia & Boogen, Nina & Filippini, Massimo & Kumar, Nilkanth, 2017. "Explaining electricity demand and the role of energy and investment literacy on end-use efficiency of Swiss households," Energy Economics, Elsevier, vol. 68(S1), pages 89-102.
    14. Lambertini, Luca & Poyago-Theotoky, Joanna & Tampieri, Alessandro, 2017. "Cournot competition and “green” innovation: An inverted-U relationship," Energy Economics, Elsevier, vol. 68(C), pages 116-123.
    15. Michael Finus & Francesco Furini & Anna Viktoria Rohrer, 2021. "International Environmental Agreements and the Paradox of Cooperation: Revisiting and Generalizing Some Previous Results," Graz Economics Papers 2021-05, University of Graz, Department of Economics.
    16. Michael Finus, 2024. "A Mechanism for Addressing Compliance and Participation in Global Public Good Treaties: A Comment," Graz Economics Papers 2024-14, University of Graz, Department of Economics.
    17. Rubio, Santiago J., "undated". "Self-Enforcing International Environmental Agreements: Adaptation and Complementarity," ETA: Economic Theory and Applications 276179, Fondazione Eni Enrico Mattei (FEEM).
    18. Wolfgang Buchholz & Todd Sandler, 2017. "Successful Leadership in Global Public Good Provision: Incorporating Behavioural Approaches," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(3), pages 591-607, July.
    19. Francisco J André & Michael Finus, 2024. "Endogenous learning in international environmental agreements: the impact of research spillovers and the degree of cooperation," Oxford Economic Papers, Oxford University Press, vol. 76(3), pages 877-900.
    20. Francisco J Andre & Michael Finus & Leyla Sayin, 2017. "Endogenous Learning to Reduce Uncertainty in Climate Change: The Role of Knowledge Spillovers and the Degree of Cooperation in International Environmental Agreements," Department of Economics Working Papers 66/17, University of Bath, Department of Economics.
    21. Eichner, Thomas & Kollenbach, Gilbert, 2022. "Environmental agreements, research and technological spillovers," European Journal of Operational Research, Elsevier, vol. 300(1), pages 366-377.

    More about this item

    Keywords

    ;

    JEL classification:

    • D74 - Microeconomics - - Analysis of Collective Decision-Making - - - Conflict; Conflict Resolution; Alliances; Revolutions
    • F53 - International Economics - - International Relations, National Security, and International Political Economy - - - International Agreements and Observance; International Organizations
    • H41 - Public Economics - - Publicly Provided Goods - - - Public Goods
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemcl:172435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.