IDEAS home Printed from https://ideas.repec.org/p/ags/eaa107/6499.html
   My bibliography  Save this paper

Dea Application To Evaluate The Technical And Ecological Efficiency Of Water Pricing Policies

Author

Listed:
  • Giannoccaro, Giacomo
  • Prosperi, Maurizio
  • Zanni, G.

Abstract

With the enforcement of the Water Framework Directive 2000/60/EC (WFD), policy makers are required to pursue the improvement of the use efficiency of the water resources in the agricultural sector. For this purpose, we suggest a methodology to perform an ex-ante analysis of the efficiency of water pricing policies, based on a two stage DEA technique, by which it is possible to disaggregate the technical and the ecological efficiency of the policy. According to our results, we found that, coherently with the WFD principles, the direct pricing methods show the highest levels of efficiency. However, we have also found that some indirect pricing methods show relatively high levels of efficiency. Therefore, since the high cost for the management and implementation of water measurement devices required to apply the volumetric methods, indirect pricing methods might still be preferable.

Suggested Citation

  • Giannoccaro, Giacomo & Prosperi, Maurizio & Zanni, G., 2008. "Dea Application To Evaluate The Technical And Ecological Efficiency Of Water Pricing Policies," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6499, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa107:6499
    DOI: 10.22004/ag.econ.6499
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/6499/files/cp08gi18.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.6499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    2. Colin Glass, J. & McCallion, Gillian & McKillop, Donal G. & Rasaratnam, Syamarlah & Stringer, Karl S., 2006. "Implications of variant efficiency measures for policy evaluations in UK higher education," Socio-Economic Planning Sciences, Elsevier, vol. 40(2), pages 119-142, June.
    3. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Chami & Alessandra Scardigno & Giulio Malorgio, 2011. "Impacts of Combined Technical and Economic Measures on Water Saving in Agriculture under Water Availability Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3911-3929, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    2. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    3. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    4. Moncayo–Martínez, Luis A. & Ramírez–Nafarrate, Adrián & Hernández–Balderrama, María Guadalupe, 2020. "Evaluation of public HEI on teaching, research, and knowledge dissemination by Data Envelopment Analysis," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    5. Wang, Rong & Zhao, Xing & Zhang, Ling, 2022. "Research on the impact of green finance and abundance of natural resources on China's regional eco-efficiency," Resources Policy, Elsevier, vol. 76(C).
    6. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    7. Mika Kortelainen & Timo Kuosmanen, 2007. "Eco-efficiency analysis of consumer durables using absolute shadow prices," Journal of Productivity Analysis, Springer, vol. 28(1), pages 57-69, October.
    8. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    9. Murinde, Victor & Zhao, Tianshu, 2009. "Bank competition, risk taking and productive efficiency: Evidence from Nigeria's banking reform experiments," Stirling Economics Discussion Papers 2009-23, University of Stirling, Division of Economics.
    10. Soteriou, Andreas C. & Zenios, Stavros A., 1999. "Using data envelopment analysis for costing bank products," European Journal of Operational Research, Elsevier, vol. 114(2), pages 234-248, April.
    11. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    12. Renata Machado de Andrade & Suhyung Lee & Paul Tae-Woo Lee & Oh Kyoung Kwon & Hye Min Chung, 2019. "Port Efficiency Incorporating Service Measurement Variables by the BiO-MCDEA: Brazilian Case," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA environmental assessment of coal fired power plants: Methodological comparison between radial and non-radial models," Energy Economics, Elsevier, vol. 34(6), pages 1854-1863.
    14. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    15. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
    16. Avkiran, Necmi K., 2001. "Investigating technical and scale efficiencies of Australian Universities through data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 35(1), pages 57-80, March.
    17. Sengupta, Atanu & Kundu, Subrata, 2006. "Scale Efficiency of Indian Farmers: A Non- Parametric Approach," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 61(4), pages 1-11.
    18. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    19. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    20. Aparicio, Juan & Santin, Daniel, 2018. "A note on measuring group performance over time with pseudo-panels," European Journal of Operational Research, Elsevier, vol. 267(1), pages 227-235.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa107:6499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.