IDEAS home Printed from https://ideas.repec.org/p/aep/anales/4620.html
   My bibliography  Save this paper

Efficiency Assessment on Codified Knowledge Products. An SFA Approach

Author

Listed:
  • Ferro Gustavo
  • Gatti Nicolás

Abstract

Knowledge applied to innovation is increasingly recognized as an explanatory factor of economic growth. Innovation derives from the application of knowledge to generate new products or new processes. National Innovation Systems (NIS) performs as the formal or informal network of people within institutions, interacting to produce and apply knowledge to innovation. NIS can be understood as two subsystems: one based on scientifical and technological work, producing codified products (publications and patents), and the other centered on practical actions to diffuse, apply, and use knowledge. Our objective is to assess cost efficiency in the production of codified knowledge outputs (CKO), being our unit of analysis countries. To attain our goal, we apply a Stochastic Frontier Analysis (SFA) to estimate a cost frontier of CKO. The sample is a panel that includes 1189 observations, for 23 years (1996-2019), and 82 countries. Our main results identify determinants and patterns of efficiency and productivity, tendencies, and specifics of countries and groups of them.

Suggested Citation

  • Ferro Gustavo & Gatti Nicolás, 2022. "Efficiency Assessment on Codified Knowledge Products. An SFA Approach," Asociación Argentina de Economía Política: Working Papers 4620, Asociación Argentina de Economía Política.
  • Handle: RePEc:aep:anales:4620
    as

    Download full text from publisher

    File URL: https://aaep.org.ar/works/works2022/4620.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    2. Bengt-Åke Lundvall, 2007. "National Innovation Systems—Analytical Concept and Development Tool," Industry and Innovation, Taylor & Francis Journals, vol. 14(1), pages 95-119.
    3. Subal C. Kumbhakar & Almas Heshmati, 1995. "Efficiency Measurement in Swedish Dairy Farms: An Application of Rotating Panel Data, 1976–88," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(3), pages 660-674.
    4. Bengt-Åke Lundvall, 2007. "Innovation System Research – Where it came from and where it might go," Globelics Working Paper Series 2007-01, Globelics - Global Network for Economics of Learning, Innovation, and Competence Building Systems, Aalborg University, Department of Business and Management.
    5. Schot, Johan & Steinmueller, W. Edward, 2018. "Three frames for innovation policy: R&D, systems of innovation and transformative change," Research Policy, Elsevier, vol. 47(9), pages 1554-1567.
    6. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    7. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    2. MAIMOUNA DIAKITE & Jean-François BRUN, 2016. "Tax Potential and Tax Effort: An Empirical Estimation for Non-Resource Tax Revenue and VAT’s Revenue," EcoMod2016 9537, EcoMod.
    3. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    4. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    5. Idaira Cabrera‐Suárez & Jorge V. Pérez‐Rodríguez, 2021. "Bank branch performance and cost efficiency: A stochastic frontier panel data approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5850-5863, October.
    6. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    7. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.
    8. Badunenko, Oleg & D’Inverno, Giovanna & De Witte, Kristof, 2023. "On distinguishing the direct causal effect of an intervention from its efficiency-enhancing effects," European Journal of Operational Research, Elsevier, vol. 310(1), pages 432-447.
    9. James Carroll & Carol Newman & Fiona Thorne, 2011. "A comparison of stochastic frontier approaches for estimating technical inefficiency and total factor productivity," Applied Economics, Taylor & Francis Journals, vol. 43(27), pages 4007-4019.
    10. Goyal, S.K. & Suhag, K.S. & Pandey, U.K., 2006. "An Estimation of Technical Efficiency of Paddy Farmers in Haryana State of India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 61(1), pages 1-15.
    11. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    12. Sabine Gralka, 2018. "Persistent inefficiency in the higher education sector: evidence from Germany," Education Economics, Taylor & Francis Journals, vol. 26(4), pages 373-392, July.
    13. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    14. Keller, Michael, 2020. "Wasted windfalls: Inefficiencies in health care spending in oil rich countries," Resources Policy, Elsevier, vol. 66(C).
    15. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    16. Emilie Caldeira & Alou Adessé Dama & Ali Compaoré & Mario Mansour & Grégoire Rota-Graziosi, 2020. "Tax effort in Sub-Saharan African countries : evidence from a new dataset," Working Papers hal-02543162, HAL.
    17. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    18. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    19. Marvin A. Titus & Adriana Vamosiu & Shannon Hayes Buenaflor & Casey Maliszewski Lukszo, 2021. "Persistent Cost Efficiency at Public Community Colleges in the US: A Stochastic Frontier Analysis," Research in Higher Education, Springer;Association for Institutional Research, vol. 62(8), pages 1168-1197, December.
    20. Lee, Young Hoon, 2006. "A stochastic production frontier model with group-specific temporal variation in technical efficiency," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1616-1630, November.

    More about this item

    JEL classification:

    • O12 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Microeconomic Analyses of Economic Development
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aep:anales:4620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juan Manuel Quintero (email available below). General contact details of provider: https://edirc.repec.org/data/aaeppea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.