IDEAS home Printed from https://ideas.repec.org/p/aap/wpaper/088.html
   My bibliography  Save this paper

Weak Approximations for Wiener Functionals

Author

Listed:
  • Dorival Leão
  • Alberto Ohashi

Abstract

In this paper we introduce a simple space-filtration discretization scheme on Wiener space which allows us to study weak decompositions and smooth approximations for a large class of Wiener functionals. We show that any Wiener functional has an underlying robust semimartingale skeleton which under mild conditions converges to it. The approximation is given in terms of discrete-jumping filtrations which allow us to approximate irregular processes by means of a stochastic derivative operator on Wiener space. As a by-product, we prove that continuous paths and a suitable notion of energy are sufficient in order to get a unique orthogonal decomposition similar to weak Dirichletprocesses. In this direction, we generalize the main results given in Graversen and Rao [29] and Coquet et al. [12] in the particular Brownian filtration case. The second part of this paper is devoted to the application of these abstract results to concrete non-smooth processes. We show that our embedded semi-martingale structure provides an easily implementable approximation scheme for the classical Clark-Ocone formula in full generality. Unlike in previous works our methodology does not assume an underlying Markovian structure and requires no use of Malliavin weights as in the classical literature of Mathematical Finance.

Suggested Citation

  • Dorival Leão & Alberto Ohashi, 2010. "Weak Approximations for Wiener Functionals," Business and Economics Working Papers 088, Unidade de Negocios e Economia, Insper.
  • Handle: RePEc:aap:wpaper:088
    as

    Download full text from publisher

    File URL: https://repositorio.insper.edu.br/handle/11224/5820
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    2. Jakša Cvitanić & Jin Ma & Jianfeng Zhang, 2003. "Efficient Computation of Hedging Portfolios for Options with Discontinuous Payoffs," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 135-151, January.
    3. Gozzi, Fausto & Russo, Francesco, 2006. "Weak Dirichlet processes with a stochastic control perspective," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1563-1583, November.
    4. Eric Benhamou, 2003. "Optimal Malliavin Weighting Function for the Computation of the Greeks," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 37-53, January.
    5. Jan Ubøe & Bernt Øksendal & Knut Aase & Nicolas Privault, 2000. "White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance," Finance and Stochastics, Springer, vol. 4(4), pages 465-496.
    6. Knight, Frank B., 1997. "Approximation of stopped Brownian local time by diadic crossing chains," Stochastic Processes and their Applications, Elsevier, vol. 66(2), pages 253-270, March.
    7. Hans‐Peter Bermin, 2002. "A General Approach to Hedging Options: Applications to Barrier and Partial Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 199-218, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leão, Dorival & Ohashi, Alberto, 2010. "Weak Approximations for Wiener Functionals," Insper Working Papers wpe_215, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    2. Leonidas Sandoval Junior & Adriana Bruscato & Maria Kelly Venezuela, 2012. "Weak Approximations for Wiener Functionals," Business and Economics Working Papers 162, Unidade de Negocios e Economia, Insper.
    3. Chen, Nan & Glasserman, Paul, 2007. "Malliavin Greeks without Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1689-1723, November.
    4. Leão, Dorival & Ohashi, Alberto, 2012. "Weak Approximations for Wiener Functionals," Insper Working Papers wpe_276, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    5. Tebaldi, Claudio, 2005. "Hedging using simulation: a least squares approach," Journal of Economic Dynamics and Control, Elsevier, vol. 29(8), pages 1287-1312, August.
    6. Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
    7. Elisa Alòs & Christian-Olivier Ewald, 2005. "A note on the Malliavin differentiability of the Heston volatility," Economics Working Papers 880, Department of Economics and Business, Universitat Pompeu Fabra.
    8. El-Khatib, Youssef & Abdulnasser, Hatemi-J, 2011. "On the calculation of price sensitivities with jump-diffusion structure," MPRA Paper 30596, University Library of Munich, Germany.
    9. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    10. Cont, Rama & Lu, Yi, 2016. "Weak approximation of martingale representations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 857-882.
    11. Muroi, Yoshifumi & Suda, Shintaro, 2013. "Discrete Malliavin calculus and computations of greeks in the binomial tree," European Journal of Operational Research, Elsevier, vol. 231(2), pages 349-361.
    12. Fabrice Borel-Mathurin & Nicole El Karoui & Stéphane Loisel & Julien Vedani, 2020. "Locality in time of the European insurance regulation "risk-neutral" valuation framework, a pre-and post-Covid analysis and further developments," Working Papers hal-02905181, HAL.
    13. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
    14. Robert de Rozario, 2003. "On Higher Derivatives of Expectations," Risk and Insurance 0308001, University Library of Munich, Germany.
    15. Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.
    16. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.
    17. D. Baños & T. Meyer-Brandis & F. Proske & S. Duedahl, 2017. "Computing deltas without derivatives," Finance and Stochastics, Springer, vol. 21(2), pages 509-549, April.
    18. Christian P. Fries & Joerg Kampen, 2005. "Proxy simulation schemes using likelihood ratio weighted Monte Carlo for generic robust Monte-Carlo sensitivities and high accuracy drift approximation (with applications to the LIBOR Market Model)," Finance 0504010, University Library of Munich, Germany.
    19. Robert J. Elliott & Tak Kuen Siu, 2023. "Hedging options in a hidden Markov‐switching local‐volatility model via stochastic flows and a Monte‐Carlo method," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(7), pages 925-950, July.
    20. Elena Issoglio & Francesco Russo, 2024. "Stochastic Differential Equations with Singular Coefficients: The Martingale Problem View and the Stochastic Dynamics View," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2352-2393, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aap:wpaper:088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteca Telles (email available below). General contact details of provider: https://edirc.repec.org/data/inspebr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.