IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v231y2013i2p349-361.html
   My bibliography  Save this article

Discrete Malliavin calculus and computations of greeks in the binomial tree

Author

Listed:
  • Muroi, Yoshifumi
  • Suda, Shintaro

Abstract

This paper proposes new methods for computation of greeks using the binomial tree and the discrete Malliavin calculus. In the last decade, the Malliavin calculus has come to be considered as one of the main tools in financial mathematics. It is particularly important in the computation of greeks using Monte Carlo simulations. In previous studies, greeks were usually represented by expectation formulas that are derived from the Malliavin calculus and these expectations are computed using Monte Carlo simulations. On the other hand, the binomial tree approach can also be used to compute these expectations. In this article, we employ the discrete Malliavin calculus to obtain expectation formulas for greeks by the binomial tree method. All the results are obtained in an elementary manner.

Suggested Citation

  • Muroi, Yoshifumi & Suda, Shintaro, 2013. "Discrete Malliavin calculus and computations of greeks in the binomial tree," European Journal of Operational Research, Elsevier, vol. 231(2), pages 349-361.
  • Handle: RePEc:eee:ejores:v:231:y:2013:i:2:p:349-361
    DOI: 10.1016/j.ejor.2013.05.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713004372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.05.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    2. Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
    3. Eric Benhamou, 2003. "Optimal Malliavin Weighting Function for the Computation of the Greeks," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 37-53, January.
    4. Montero, Miquel & Kohatsu-Higa, Arturo, 2003. "Malliavin Calculus applied to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 548-570.
    5. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suda, Shintaro & Muroi, Yoshifumi, 2015. "Computation of Greeks using binomial trees in a jump-diffusion model," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 93-110.
    2. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.
    3. Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.
    2. Dong An & Noah Linden & Jin-Peng Liu & Ashley Montanaro & Changpeng Shao & Jiasu Wang, 2020. "Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance," Papers 2012.06283, arXiv.org, revised Jun 2021.
    3. Suda, Shintaro & Muroi, Yoshifumi, 2015. "Computation of Greeks using binomial trees in a jump-diffusion model," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 93-110.
    4. San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
    5. Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
    6. Kim, Young Shin & Stoyanov, Stoyan & Rachev, Svetlozar & Fabozzi, Frank J., 2019. "Enhancing binomial and trinomial equity option pricing models," Finance Research Letters, Elsevier, vol. 28(C), pages 185-190.
    7. Anselm Hudde & Ludger Rüschendorf, 2023. "European and Asian Greeks for Exponential Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    8. Jean-Christophe Breton & Youssef El-Khatib & Jun Fan & Nicolas Privault, 2021. "A q-binomial extension of the CRR asset pricing model," Papers 2104.10163, arXiv.org, revised Feb 2023.
    9. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    10. Mark Joshi & Mike Staunton, 2012. "On the analytical/numerical pricing of American put options against binomial tree prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 17-20, December.
    11. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    12. Chen, Nan & Glasserman, Paul, 2007. "Malliavin Greeks without Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1689-1723, November.
    13. David Heath & Stefano Herzel, 2002. "Efficient option valuation using trees," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(3), pages 163-178.
    14. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    15. Alona Bock & Ralf Korn, 2016. "Improving Convergence of Binomial Schemes and the Edgeworth Expansion," Risks, MDPI, vol. 4(2), pages 1-22, May.
    16. Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.
    17. Guillaume Leduc & Merima Nurkanovic Hot, 2020. "Joshi’s Split Tree for Option Pricing," Risks, MDPI, vol. 8(3), pages 1-26, August.
    18. Nicola Cufaro Petroni & Piergiacomo Sabino, 2013. "Pricing and Hedging Asian Basket Options with Quasi-Monte Carlo Simulations," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 147-163, March.
    19. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
    20. Entrop, Oliver & Fischer, Georg, 2019. "Hedging costs and joint determinants of premiums and spreads in structured financial products," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-34-19, University of Passau, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:231:y:2013:i:2:p:349-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.