IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/30596.html
   My bibliography  Save this paper

On the calculation of price sensitivities with jump-diffusion structure

Author

Listed:
  • El-Khatib, Youssef
  • Abdulnasser, Hatemi-J

Abstract

We provide a new theoretical framework for estimating the price sensitivities of a trading position with regard to five underlying factors in jump-diffusion models using jump times Poisson noise. The proposition that results in a general solution is mathematically proved. The general solution that this paper offers can be applied to compute each price sensitivity. The suggested modeling approach deals with the shortcomings of the Black-Scholes formula such as the jumps that can occur at any time in the stock's price. Via the Malliavin calculus we show that differentiation can be transformed into integration, which makes the price sensitivities operational and more efficient. Thus, the solution that is provided in this paper is expected to make decision making under uncertainty more efficient.

Suggested Citation

  • El-Khatib, Youssef & Abdulnasser, Hatemi-J, 2011. "On the calculation of price sensitivities with jump-diffusion structure," MPRA Paper 30596, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:30596
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/30596/1/MPRA_paper_30596.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/45328/1/MPRA_paper_30596.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Youssef El-Khatib & Nicolas Privault, 2004. "Computations of Greeks in a market with jumps via the Malliavin calculus," Finance and Stochastics, Springer, vol. 8(2), pages 161-179, May.
    2. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
    3. Kawai, Reiichiro & Takeuchi, Atsushi, 2010. "Sensitivity analysis for averaged asset price dynamics with gamma processes," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 42-49, January.
    4. Elliott, R. J. & Tsoi, A. H., 1993. "Integration by Parts for Poisson Processes," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 179-190, February.
    5. Jan Ubøe & Bernt Øksendal & Knut Aase & Nicolas Privault, 2000. "White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance," Finance and Stochastics, Springer, vol. 4(4), pages 465-496.
    6. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulnasser Hatemi-J & Youssef El-Khatib, 2018. "Valuation of Currency Options in Markets with a Crunch," Papers 1801.08346, arXiv.org.
    2. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anselm Hudde & Ludger Rüschendorf, 2023. "European and Asian Greeks for Exponential Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    2. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    3. Atsushi Takeuchi, 2010. "Bismut–Elworthy–Li-Type Formulae for Stochastic Differential Equations with Jumps," Journal of Theoretical Probability, Springer, vol. 23(2), pages 576-604, June.
    4. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.
    5. Reiichiro Kawai, 2012. "Likelihood ratio gradient estimation for Meixner distribution and Lévy processes," Computational Statistics, Springer, vol. 27(4), pages 739-755, December.
    6. Kawai, Reiichiro & Takeuchi, Atsushi, 2010. "Sensitivity analysis for averaged asset price dynamics with gamma processes," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 42-49, January.
    7. Bilgi Yilmaz, 2018. "Computation of option greeks under hybrid stochastic volatility models via Malliavin calculus," Papers 1806.06061, arXiv.org.
    8. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    9. Masafumi Hayashi, 2010. "Coefficients of Asymptotic Expansions of SDE with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 373-389, December.
    10. Cont, Rama & Lu, Yi, 2016. "Weak approximation of martingale representations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 857-882.
    11. Takafumi Amaba, 2014. "A Discrete-Time Clark-Ocone Formula for Poisson Functionals," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 97-120, May.
    12. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    13. Chen, Nan & Glasserman, Paul, 2007. "Malliavin Greeks without Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1689-1723, November.
    14. Privault, Nicolas & Wei, Xiao, 2004. "A Malliavin calculus approach to sensitivity analysis in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 679-690, December.
    15. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
    16. Leão, Dorival & Ohashi, Alberto, 2010. "Weak Approximations for Wiener Functionals," Insper Working Papers wpe_215, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    17. Barbara Forster & Eva Luetkebohmert & Josef Teichmann, 2005. "Absolutely continuous laws of Jump-Diffusions in finite and infinite dimensions with applications to mathematical Finance," Papers math/0509016, arXiv.org, revised Oct 2008.
    18. Leitao, Álvaro & Oosterlee, Cornelis W. & Ortiz-Gracia, Luis & Bohte, Sander M., 2018. "On the data-driven COS method," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 68-84.
    19. Yeliz Yolcu-Okur & Tilman Sayer & Bilgi Yilmaz & B. Alper Inkaya, 2018. "Computation of the Delta of European options under stochastic volatility models," Computational Management Science, Springer, vol. 15(2), pages 213-237, June.
    20. Yuri F. Saporito, 2020. "Pricing Path-Dependent Derivatives under Multiscale Stochastic Volatility Models: a Malliavin Representation," Papers 2005.04297, arXiv.org.

    More about this item

    Keywords

    Malliavin Calculus; Asset Pricing; Price Sensitivity; Jump-diffusion Models; Jump Times Poisson Noise; European Options.;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.