IDEAS home Printed from https://ideas.repec.org/h/spr/circec/v2y2022i4d10.1007_s43615-022-00153-1.html
   My bibliography  Save this book chapter

Industrial Symbiosis to Circular Economy: What Does the Literature Reveal for a Successful Complex Industrial Area?

Author

Listed:
  • C. Oughton

    (Kwinana Industries Council
    Murdoch University)

  • B. Kurup

    (Murdoch University)

  • M. Anda

    (Harry Butler Institute, Murdoch University)

  • G. Ho

    (Murdoch University)

Abstract

We observe that some industrial areas thrive, whilst others under-perform, and that the competitive potential of an enterprise located within an industrial area is impacted by a range of non-apparent characteristics related to the particular location. A dynamic industrial area is a better place for an industrial enterprise to be located than one that on the face of it seems lack-lustre—the ‘dynamism’ of the industrial area seems not that well understood or described. The goal of the literature review was to determine to what extent researchers have gone beyond the traditional view that industrial symbiosis (IS) is singularly focused on the symbiotic relationships that are responsible for the beneficial outcomes associated with product, by-product, and utility exchanges. We attempted to expose other forms of symbiotic relationships that might also contribute to the improved economic outcomes of companies located within complex industrial areas. Our findings confirm there are additional interacting factors contributing to the relative success (dynamism) of a given complex industrial area. We posit that an industrial area will exhibit varying degrees of success or failure, depending on the extent to which its creators have given thought to how it will operate to contribute to the international competitive advantages of its industrial inhabitants. We identified four contributing factors that contribute to this dynamism, and these align with an emerging four-dimensional framework for IS which the author is describing as the KIC4 dimensions of industrial symbiosis.

Suggested Citation

  • C. Oughton & B. Kurup & M. Anda & G. Ho, 2022. "Industrial Symbiosis to Circular Economy: What Does the Literature Reveal for a Successful Complex Industrial Area?," Circular Economy and Sustainability,, Springer.
  • Handle: RePEc:spr:circec:v:2:y:2022:i:4:d:10.1007_s43615-022-00153-1
    DOI: 10.1007/s43615-022-00153-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-022-00153-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-022-00153-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marian R. Chertow, 2000. "The IPAT Equation and Its Variants," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 13-29, October.
    2. Alfred Posch & Abhishek Agarwal & Peter Strachan, 2011. "Editorial: Managing Industrial Symbiosis (IS) Networks," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 421-427, November.
    3. Jensen, Paul D. & Basson, Lauren & Hellawell, Emma E. & Bailey, Malcolm R. & Leach, Matthew, 2011. "Quantifying ‘geographic proximity’: Experiences from the United Kingdom's National Industrial Symbiosis Programme," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 703-712.
    4. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    5. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    6. Morgan, Robert E. & Strong, Carolyn A., 2003. "Business performance and dimensions of strategic orientation," Journal of Business Research, Elsevier, vol. 56(3), pages 163-176, March.
    7. Anne P.M. Velenturf & Paul D. Jensen, 2016. "Promoting Industrial Symbiosis: Using the Concept of Proximity to Explore Social Network Development," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 700-709, August.
    8. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    9. Vincent Moreau & Marlyne Sahakian & Pascal Griethuysen & François Vuille, 2017. "Coming Full Circle: Why Social and Institutional Dimensions Matter for the Circular Economy," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 497-506, June.
    10. Raven, Rob P.J.M., 2006. "Towards alternative trajectories? Reconfigurations in the Dutch electricity regime," Research Policy, Elsevier, vol. 35(4), pages 581-595, May.
    11. C. Oughton & M. Anda & B. Kurup & G. Ho, 2021. "Water Circular Economy at the Kwinana Industrial Area, Western Australia—the Dimensions and Value of Industrial Symbiosis," Circular Economy and Sustainability,, Springer.
    12. Chang Yu & Chris Davis & Gerard P.J. Dijkema, 2014. "Understanding the Evolution of Industrial Symbiosis Research," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 280-293, April.
    13. Weslynne S. Ashton, 2011. "Managing Performance Expectations of Industrial Symbiosis," Business Strategy and the Environment, Wiley Blackwell, vol. 20(5), pages 297-309, July.
    14. Noel Brings Jacobsen, 2006. "Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 239-255, January.
    15. John R. Ehrenfeld, 2007. "Would Industrial Ecology Exist without Sustainability in the Background?," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 73-84, January.
    16. Alan Murray & Keith Skene & Kathryn Haynes, 2017. "The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context," Journal of Business Ethics, Springer, vol. 140(3), pages 369-380, February.
    17. Devrim Murat Yazan & Luca Fraccascia, 2020. "Sustainable operations of industrial symbiosis: an enterprise input-output model integrated by agent-based simulation," International Journal of Production Research, Taylor & Francis Journals, vol. 58(2), pages 392-414, January.
    18. Artem Golev & Glen D. Corder & Damien P. Giurco, 2015. "Barriers to Industrial Symbiosis: Insights from the Use of a Maturity Grid," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 141-153, February.
    19. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    20. Reid Lifset, 1997. "A Metaphor, a Field, and a Journal," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 1-3, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanh Tiep Le & Abhishek Behl & Gary Graham, 2023. "The Role of Entrepreneurship in Successfully Achieving Circular Supply Chain Management," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 537-561, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    2. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    3. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    4. Rizos, Vasileios & Tuokko, Katja & Behrens, Arno, 2017. "The Circular Economy: A review of definitions, processes and impacts," CEPS Papers 12440, Centre for European Policy Studies.
    5. Juan Henriques & Paulo Ferrão & Rui Castro & João Azevedo, 2021. "Industrial Symbiosis: A Sectoral Analysis on Enablers and Barriers," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    6. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability,, Springer.
    7. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    8. Alfred Posch & Abhishek Agarwal & Peter Strachan, 2011. "Editorial: Managing Industrial Symbiosis (IS) Networks," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 421-427, November.
    9. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2017. "Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements," Ecological Economics, Elsevier, vol. 137(C), pages 148-162.
    10. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    11. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    12. C. Oughton & M. Anda & B. Kurup & G. Ho, 2021. "Water Circular Economy at the Kwinana Industrial Area, Western Australia—the Dimensions and Value of Industrial Symbiosis," Circular Economy and Sustainability,, Springer.
    13. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    14. Lovisa Harfeldt-Berg & Sarah Broberg & Karin Ericsson, 2022. "The Importance of Individual Actor Characteristics and Contextual Aspects for Promoting Industrial Symbiosis Networks," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    15. Daniel Jato-Espino & Carmen Ruiz-Puente, 2020. "Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    16. Devrim Murat Yazan & Vahid Yazdanpanah & Luca Fraccascia, 2020. "Learning strategic cooperative behavior in industrial symbiosis: A game‐theoretic approach integrated with agent‐based simulation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 2078-2091, July.
    17. Aurélien Bruel & Radu Godina, 2023. "A Smart Contract Architecture Framework for Successful Industrial Symbiosis Applications Using Blockchain Technology," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    18. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    19. Raffaella Taddeo & Alberto Simboli & Giuseppe Ioppolo & Anna Morgante, 2017. "Industrial Symbiosis, Networking and Innovation: The Potential Role of Innovation Poles," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    20. Wadström, Christoffer & Johansson, Maria & Wallén, Magnus, 2021. "A framework for studying outcomes in industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:2:y:2022:i:4:d:10.1007_s43615-022-00153-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.