IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5884-d1109765.html
   My bibliography  Save this article

A Smart Contract Architecture Framework for Successful Industrial Symbiosis Applications Using Blockchain Technology

Author

Listed:
  • Aurélien Bruel

    (Research and Innovation Department, Capgemini Engineering, 4 Avenue, Didier Daurat, 31700 Blagnac, France)

  • Radu Godina

    (Research and Development Unit in Mechanical and Industrial Engineering (UNIDEMI), Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
    Laboratório Associado de Sistemas Inteligentes, LASI, 4800-058 Guimarães, Portugal)

Abstract

Industrial Symbiosis (IS) involves a network of organizations that exchange energy, materials, and by-products to lower production costs, reduce environmental impact, and conserve natural resources. Despite over two decades of extensive research into IS, its benefits are well known, but implementation remains challenging. This paper proposes utilizing blockchain technology (BCT) to digitize IS, making it more secure and transparent. First, drivers and barriers of BCT implementation in IS are identified. A smart contract architecture framework using Hyperledger Fabric is then proposed using the constructed theoretical background and abductive method. Finally, the paper discusses how this framework supports the implementation of BCT in IS by addressing its drivers and attempting to overcome its barriers. It is a resource for those seeking a comprehensive grasp of the foundational elements necessary for constructing a successful IS blockchain design, which is adaptable to all types of IS network configurations.

Suggested Citation

  • Aurélien Bruel & Radu Godina, 2023. "A Smart Contract Architecture Framework for Successful Industrial Symbiosis Applications Using Blockchain Technology," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5884-:d:1109765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sachin Kamble & Angappa Gunasekaran & Himanshu Arha, 2019. "Understanding the Blockchain technology adoption in supply chains-Indian context," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2009-2033, April.
    2. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    3. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    4. Wang, Yingli & Singgih, Meita & Wang, Jingyao & Rit, Mihaela, 2019. "Making sense of blockchain technology: How will it transform supply chains?," International Journal of Production Economics, Elsevier, vol. 211(C), pages 221-236.
    5. Kristin Behfar & Gerardo A. Okhuysen, 2018. "Perspective—Discovery Within Validation Logic: Deliberately Surfacing, Complementing, and Substituting Abductive Reasoning in Hypothetico-Deductive Inquiry," Organization Science, INFORMS, vol. 29(2), pages 323-340, April.
    6. Mahtab Kouhizadeh & Joseph Sarkis, 2018. "Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    7. Aurélien Bruel & Jakub Kronenberg & Nadège Troussier & Bertrand Guillaume, 2019. "Linking Industrial Ecology and Ecological Economics: A Theoretical and Empirical Foundation for the Circular Economy," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 12-21, February.
    8. Rachel Lombardi, 2017. "Non-technical barriers to (and drivers for) the circular economy through industrial symbiosis: A practical input," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 171-189.
    9. Abdelghani Bekrar & Abdessamad Ait El Cadi & Raca Todosijevic & Joseph Sarkis, 2021. "Digitalizing the Closing-of-the-Loop for Supply Chains: A Transportation and Blockchain Perspective," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    10. Moritz Böhmecke‐Schwafert & Marie Wehinger & Robin Teigland, 2022. "Blockchain for the circular economy: Theorizing blockchain's role in the transition to a circular economy through an empirical investigation," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3786-3801, December.
    11. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    12. Angelis, Jannis & Ribeiro da Silva, Elias, 2019. "Blockchain adoption: A value driver perspective," Business Horizons, Elsevier, vol. 62(3), pages 307-314.
    13. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    14. Hélène Cervo & Stéphane Ogé & Amtul Samie Maqbool & Francisco Mendez Alva & Lindsay Lessard & Alexandre Bredimas & Jean-Henry Ferrasse & Greet Van Eetvelde, 2019. "A Case Study of Industrial Symbiosis in the Humber Region Using the EPOS Methodology," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    15. Weslynne S. Ashton, 2011. "Managing Performance Expectations of Industrial Symbiosis," Business Strategy and the Environment, Wiley Blackwell, vol. 20(5), pages 297-309, July.
    16. Noel Brings Jacobsen, 2006. "Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 239-255, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyyed-Alireza Radmanesh & Alireza Haji & Omid Fatahi Valilai, 2023. "Blockchain-Based Architecture for a Sustainable Supply Chain in Cloud Architecture," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    2. Kirti Nayal & Rakesh D. Raut & Balkrishna E. Narkhede & Pragati Priyadarshinee & Gajanan B. Panchal & Vidyadhar V. Gedam, 2023. "Antecedents for blockchain technology-enabled sustainable agriculture supply chain," Annals of Operations Research, Springer, vol. 327(1), pages 293-337, August.
    3. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    4. Bai, Chunguang & Zhu, Qingyun & Sarkis, Joseph, 2021. "Joint blockchain service vendor-platform selection using social network relationships: A multi-provider multi-user decision perspective," International Journal of Production Economics, Elsevier, vol. 238(C).
    5. Wankmüller, Christian & Pulsfort, Johannes & Kunovjanek, Maximilian & Polt, Romana & Craß, Stefan & Reiner, Gerald, 2023. "Blockchain-based tokenization and its impact on plastic bottle supply chains," International Journal of Production Economics, Elsevier, vol. 257(C).
    6. Abderahman Rejeb & Karim Rejeb & Steve Simske & Horst Treiblmaier, 2021. "Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review," Logistics, MDPI, vol. 5(4), pages 1-28, October.
    7. Yasanur Kayikci & Nazlican Gozacan‐Chase & Abderahman Rejeb & Kaliyan Mathiyazhagan, 2022. "Critical success factors for implementing blockchain‐based circular supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3595-3615, November.
    8. Ashish Dwivedi & Dindayal Agrawal & Sanjoy Kumar Paul & Saurabh Pratap, 2023. "Modeling the blockchain readiness challenges for product recovery system," Annals of Operations Research, Springer, vol. 327(1), pages 493-537, August.
    9. Amin Vafadarnikjoo & Hadi Badri Ahmadi & James J. H. Liou & Tiago Botelho & Konstantinos Chalvatzis, 2023. "Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process," Annals of Operations Research, Springer, vol. 327(1), pages 129-156, August.
    10. Yuling Sun & Xiaomei Song & Yihao Jiang & Jian Guo, 2023. "Strategy Analysis of Fresh Agricultural Enterprises in a Competitive Circumstance: The Impact of Blockchain and Consumer Traceability Preferences," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    11. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2020. "The Unknown Potential of Blockchain for Sustainable Supply Chains," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    12. Chuangneng Cai & Xiancheng Hao & Kui Wang & Xuebing Dong, 2023. "The Impact of Perceived Benefits on Blockchain Adoption in Supply Chain Management," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    13. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    14. Agi, Maher A.N. & Jha, Ashish Kumar, 2022. "Blockchain technology in the supply chain: An integrated theoretical perspective of organizational adoption," International Journal of Production Economics, Elsevier, vol. 247(C).
    15. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    16. Yadav, Amit Kumar & Shweta, & Kumar, Dinesh, 2023. "Blockchain technology and vaccine supply chain: Exploration and analysis of the adoption barriers in the Indian context," International Journal of Production Economics, Elsevier, vol. 255(C).
    17. Sharfuddin Ahmed Khan & Muhammad Shujaat Mubarik & Simonov Kusi‐Sarpong & Himanshu Gupta & Syed Imran Zaman & Mobashar Mubarik, 2022. "Blockchain technologies as enablers of supply chain mapping for sustainable supply chains," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3742-3756, December.
    18. Xue Han & Pratibha Rani, 2022. "RETRACTED ARTICLE: Evaluate the barriers of blockchain technology adoption in sustainable supply chain management in the manufacturing sector using a novel Pythagorean fuzzy-CRITIC-CoCoSo approach," Operations Management Research, Springer, vol. 15(3), pages 725-742, December.
    19. Fairouz Mustafa & Suman Lodh & Monomita Nandy & Vikas Kumar, 2022. "Coupling of cryptocurrency trading with the sustainable environmental goals: Is it on the cards?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1152-1168, March.
    20. Weili Yin & Wenxue Ran, 2021. "Theoretical Exploration of Supply Chain Viability Utilizing Blockchain Technology," Sustainability, MDPI, vol. 13(15), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5884-:d:1109765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.