IDEAS home Printed from https://ideas.repec.org/f/pwa363.html
   My authors  Follow this author

Liqun Wang

Personal Details

First Name:Liqun
Middle Name:
Last Name:Wang
Suffix:
RePEc Short-ID:pwa363
http://home.cc.umanitoba.ca/~wangl1/

Affiliation

University of Manitoba, Department of Statistics

http://umanitoba.ca/
Canada, Winnipeg/Manitoba

Research output

as
Jump to: Working papers Articles Editorship

Working papers

  1. Marcel Voia & Liqun Wang & Ricardas Zitikis, 2009. "A Distributional Analysis of Treatment Effects on Subpopulations of a Socioeconomic Experiment," Carleton Economic Papers 09-02, Carleton University, Department of Economics, revised 05 Feb 2010.

Articles

  1. Li, Daniel H. & Wang, Liqun, 2016. "A weighted simulation-based estimator for incomplete longitudinal data models," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 16-22.
  2. Kun Xu & Yanyuan Ma & Liqun Wang, 2015. "Instrument Assisted Regression for Errors in Variables Models with Binary Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 104-117, March.
  3. Wang, Liqun & Lee, Chel Hee, 2014. "Discretization-based direct random sample generation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1001-1010.
  4. Taraneh Abarin & Liqun Wang, 2012. "Instrumental variable approach to covariate measurement error in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 475-493, June.
  5. Chen, Songnian & Hsiao, Cheng & Wang, Liqun, 2012. "Measurement Errors And Censored Structural Latent Variables Models," Econometric Theory, Cambridge University Press, vol. 28(03), pages 696-703, June.
  6. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.
  7. Liqun Wang, 2009. "Robert E. Weiss (2006): Modeling longitudinal data," Statistical Papers, Springer, vol. 50(1), pages 213-214, January.
  8. Liqun Wang & Alexandre Leblanc, 2008. "Second-order nonlinear least squares estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 883-900, December.
  9. Liqun Wang & James Fu, 2007. "A practical sampling approach for a Bayesian mixture model with unknown number of components," Statistical Papers, Springer, vol. 48(4), pages 631-653, October.
  10. Liqun Wang & Cheng Hsiao, 2007. "Two-stage estimation of limited dependent variable models with errors-in-variables," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 426-438, July.
  11. Wang, Liqun, 2002. "A simple adjustment for measurement errors in some limited dependent variable models," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 427-433, July.
  12. Wang, Liqun, 1998. "Estimation of censored linear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 84(2), pages 383-400, June.

Editorship

  1. Statistical Papers, Springer.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

    Sorry, no citations of working papers recorded.

Articles

  1. Taraneh Abarin & Liqun Wang, 2012. "Instrumental variable approach to covariate measurement error in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 475-493, June.

    Cited by:

    1. Kun Xu & Yanyuan Ma & Liqun Wang, 2015. "Instrument Assisted Regression for Errors in Variables Models with Binary Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 104-117, March.

  2. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.

    Cited by:

    1. Kunitomo, N. & McAleer, M.J. & Nishiyama, Y., 2010. "Moment Restriction-based Econometric Methods: An Overview," Econometric Institute Research Papers EI 2010-61, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. De Nadai, Michele & Lewbel, Arthur, 2016. "Nonparametric errors in variables models with measurement errors on both sides of the equation," Journal of Econometrics, Elsevier, vol. 191(1), pages 19-32.
    3. Taraneh Abarin & Liqun Wang, 2012. "Instrumental variable approach to covariate measurement error in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 475-493, June.
    4. Zhang, Jun & Feng, Zhenghui & Zhou, Bu, 2014. "A revisit to correlation analysis for distortion measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 116-129.
    5. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers CWP41/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. ZINDE-WALSH, Victoria, 2007. "Errors-in-Variables Models : A Generalized Functions Approach," Cahiers de recherche 14-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Susanne M. Schennach, 2013. "Convolution without independence," CeMMAP working papers CWP46/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Kun Xu & Yanyuan Ma & Liqun Wang, 2015. "Instrument Assisted Regression for Errors in Variables Models with Binary Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 104-117, March.

  3. Liqun Wang & Alexandre Leblanc, 2008. "Second-order nonlinear least squares estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 883-900, December.

    Cited by:

    1. Maria Karlsson & Thomas Laitila, 2014. "Finite mixture modeling of censored regression models," Statistical Papers, Springer, vol. 55(3), pages 627-642, August.
    2. Taraneh Abarin & Liqun Wang, 2012. "Instrumental variable approach to covariate measurement error in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 475-493, June.
    3. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.
    4. Dedi Rosadi & Shelton Peiris, 2014. "Second-order least-squares estimation for regression models with autocorrelated errors," Computational Statistics, Springer, vol. 29(5), pages 931-943, October.
    5. Lucy L. Gao & Julie Zhou, 2017. "D-optimal designs based on the second-order least squares estimator," Statistical Papers, Springer, vol. 58(1), pages 77-94, March.
    6. Xin Chen & Min Tsao & Julie Zhou, 2012. "Robust second-order least-squares estimator for regression models," Statistical Papers, Springer, vol. 53(2), pages 371-386, May.
    7. Fei Jiang & Yanyuan Ma & J. Jack Lee, 2017. "A second-order semiparametric method for survival analysis, with application to an acquired immune deficiency syndrome clinical trial study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 833-846, August.
    8. Francesco Bravo, 2013. "Partially linear varying coefficient models with missing at random responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 721-762, August.
    9. Mijeong Kim & Yanyuan Ma, 2012. "The efficiency of the second-order nonlinear least squares estimator and its extension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 751-764, August.

  4. Liqun Wang & James Fu, 2007. "A practical sampling approach for a Bayesian mixture model with unknown number of components," Statistical Papers, Springer, vol. 48(4), pages 631-653, October.

    Cited by:

    1. Wang, Liqun & Lee, Chel Hee, 2014. "Discretization-based direct random sample generation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1001-1010.

  5. Liqun Wang & Cheng Hsiao, 2007. "Two-stage estimation of limited dependent variable models with errors-in-variables," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 426-438, July.

    Cited by:

    1. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.

  6. Wang, Liqun, 2002. "A simple adjustment for measurement errors in some limited dependent variable models," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 427-433, July.

    Cited by:

    1. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.
    2. Gibson, Fiona L. & Burton, Michael P., 2009. "Biased estimates in discrete choice models: the appropriate inclusion of psychometric data into the valuation of recycled wastewater," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47943, Australian Agricultural and Resource Economics Society.
    3. Gustavo Rocha & Reinaldo Arellano-Valle & Rosangela Loschi, 2015. "Maximum likelihood methods in a robust censored errors-in-variables model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 857-877, December.

  7. Wang, Liqun, 1998. "Estimation of censored linear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 84(2), pages 383-400, June.

    Cited by:

    1. Xuejun Wang & Aiting Shen & Zhiyong Chen & Shuhe Hu, 2015. "Complete convergence for weighted sums of NSD random variables and its application in the EV regression model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 166-184, March.
    2. Yingyao Hu & Geert Ridder, 2005. "Estimation of Nonlinear Models with Mismeasured Regressors Using Marginal Information," IEPR Working Papers 05.39, Institute of Economic Policy Research (IEPR).
    3. Taraneh Abarin & Liqun Wang, 2012. "Instrumental variable approach to covariate measurement error in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 475-493, June.
    4. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.
    5. Schennach, Susanne M., 2008. "Quantile Regression With Mismeasured Covariates," Econometric Theory, Cambridge University Press, vol. 24(04), pages 1010-1043, August.
    6. Xuejun Wang & Yi Wu & Shuhe Hu, 2018. "Strong and weak consistency of LS estimators in the EV regression model with negatively superadditive-dependent errors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 41-65, January.
    7. Sukhbir Singh & Kanchan Jain & Suresh Sharma, 2014. "Replicated measurement error model under exact linear restrictions," Statistical Papers, Springer, vol. 55(2), pages 253-274, May.
    8. Chen, Xiaohong & Hong, Han & Tarozzi, Alessandro, 2008. "Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects," Working Papers 42, Yale University, Department of Economics.
    9. Gustavo Rocha & Reinaldo Arellano-Valle & Rosangela Loschi, 2015. "Maximum likelihood methods in a robust censored errors-in-variables model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 857-877, December.
    10. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
    11. ZINDE-WALSH, Victoria, 2007. "Errors-in-Variables Models : A Generalized Functions Approach," Cahiers de recherche 14-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    12. Yu Miao & Fangfang Zhao & Ke Wang & Yanping Chen, 2013. "Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors," Statistical Papers, Springer, vol. 54(1), pages 193-206, February.
    13. Song, Weixing & Yao, Weixin, 2011. "A lack-of-fit test in Tobit errors-in-variables regression models," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1792-1801.
    14. Geert Ridder & Yingyao Hu, 2004. "Estimation of Nonlinear Models with Measurement Error Using Marginal Information," Econometric Society 2004 North American Summer Meetings 21, Econometric Society.
    15. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-EXP: Experimental Economics (1) 2009-09-19

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Liqun Wang should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.