IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v75y2025ics154461232500162x.html
   My bibliography  Save this article

Multi-piecewise linear double barrier options

Author

Listed:
  • Lee, Hangsuck
  • Lee, Minha
  • Ha, Hongjun

Abstract

A double barrier option offers diverse speculation and risk management opportunities due to its exotic characteristics. An avenue for enhancing its functionality involves considering double barriers with non-standard shapes, moving beyond the conventional flat structure. This paper introduces a multi-piecewise linear double barrier option and derives an explicit pricing formula for it grounded in the analytical probability that the underlying process does not breach the multi-piecewise linear double boundary. Through numerical illustrations, we explore how the configuration of the double barrier influences the option prices.

Suggested Citation

  • Lee, Hangsuck & Lee, Minha & Ha, Hongjun, 2025. "Multi-piecewise linear double barrier options," Finance Research Letters, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:finlet:v:75:y:2025:i:c:s154461232500162x
    DOI: 10.1016/j.frl.2025.106898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S154461232500162X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.106898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tetsuhisa Miwa & A. J. Hayter & Satoshi Kuriki, 2003. "The evaluation of general non‐centred orthant probabilities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 223-234, February.
    2. Hangsuck Lee & Hongjun Ha & Minha Lee, 2022. "Piecewise linear double barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 125-151, January.
    3. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    4. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
    5. Choe, Geon Ho & Koo, Ki Hwan, 2014. "Probability of multiple crossings and pricing of double barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 156-184.
    6. Lee, Hangsuck & Jeong, Himchan & Lee, Minha, 2022. "Multi-step double barrier options," Finance Research Letters, Elsevier, vol. 47(PA).
    7. Lee, Hangsuck & Ha, Hongjun & Kong, Byungdoo & Lee, Minha, 2023. "Pricing multi-step double barrier options by the efficient non-crossing probability," Finance Research Letters, Elsevier, vol. 54(C).
    8. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298, October.
    9. Hangsuck Lee & Hongjun Ha & Minha Lee, 2022. "Piecewise linear boundary crossing probabilities, barrier options, and variable annuities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2248-2272, December.
    10. Liqun Wang & Klaus Pötzelberger, 2007. "Crossing Probabilities for Diffusion Processes with Piecewise Continuous Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 21-40, March.
    11. Cho H. Hui, 1997. "Time‐dependent barrier option values," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(6), pages 667-688, September.
    12. Otto Konstandatos, 2018. "Methods for Analytical Barrier Option Pricing with Multiple Exponential Time-Varying Boundaries," Research Paper Series 396, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Hangsuck & Ha, Hongjun & Kong, Byungdoo & Lee, Minha, 2023. "Pricing multi-step double barrier options by the efficient non-crossing probability," Finance Research Letters, Elsevier, vol. 54(C).
    2. Lee, Hangsuck & Kye, Yisub & Kong, Byungdoo & Song, Seongjoo, 2025. "Multi-step double barrier options under time-varying interest rates," The North American Journal of Economics and Finance, Elsevier, vol. 76(C).
    3. Hangsuck Lee & Hongjun Ha & Minha Lee, 2022. "Piecewise linear double barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 125-151, January.
    4. Lee, Hangsuck & Ko, Bangwon & Lee, Minha, 2023. "The pricing and static hedging of multi-step double barrier options," Finance Research Letters, Elsevier, vol. 55(PA).
    5. Lee, Hangsuck & Jeong, Himchan & Lee, Minha, 2022. "Multi-step double barrier options," Finance Research Letters, Elsevier, vol. 47(PA).
    6. Lee, Hangsuck & Ha, Hongjun & Kong, Byungdoo, 2024. "Pricing first-touch digitals with a multi-step double boundary and American barrier options," Finance Research Letters, Elsevier, vol. 59(C).
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    9. Bekiros, Stelios & Kouloumpou, Dimitra, 2019. "On the pricing of exotic options: A new closed-form valuation approach," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 153-162.
    10. Hangsuck Lee & Hongjun Ha & Minha Lee, 2022. "Piecewise linear boundary crossing probabilities, barrier options, and variable annuities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2248-2272, December.
    11. Lee, Hangsuck & Lee, Gaeun & Song, Seongjoo, 2023. "Min–max multi-step barrier options and their variants," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    12. Zhang, Jiayi & Zhou, Ke, 2024. "Analytical valuation of vulnerable chained options," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    13. Lu, Yu-Ming & Lyuu, Yuh-Dauh, 2023. "Very fast algorithms for implied barriers and moving-barrier options pricing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 251-271.
    14. Lee, Hangsuck & Ha, Hongjun & Lee, Minha, 2021. "Valuation of piecewise linear barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    15. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    16. Hangsuck Lee & Gaeun Lee & Seongjoo Song, 2022. "Multi‐step reflection principle and barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 692-721, April.
    17. Andrés D. Fundia & Francisco Venegas-Martínez, 2004. "Probabilistic Greeks," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 3(3), pages 303-311, Septiembr.
    18. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    19. Bakshi, Gurdip & Crosby, John & Gao, Xiaohui & Hansen, Jorge W., 2023. "Treasury option returns and models with unspanned risks," Journal of Financial Economics, Elsevier, vol. 150(3).
    20. Galai, Dan & Raviv, Alon & Wiener, Zvi, 2007. "Liquidation triggers and the valuation of equity and debt," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3604-3620, December.

    More about this item

    Keywords

    Brownian motion of piecewise constant drift; Piecewise linear double barrier; Double barrier option;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:75:y:2025:i:c:s154461232500162x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.